Supervised Contrast Learning Text Classification Model Based on Data Quality Augmentation

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Liang Wu, Fangfang Zhang, Chao Cheng, Shinan Song
{"title":"Supervised Contrast Learning Text Classification Model Based on Data Quality Augmentation","authors":"Liang Wu, Fangfang Zhang, Chao Cheng, Shinan Song","doi":"10.1145/3653300","DOIUrl":null,"url":null,"abstract":"<p>Token-level data augmentation generates text samples by modifying the words of the sentences. However, data that are not easily classified can negatively affect the model. In particular, not considering the role of keywords when performing random augmentation operations on samples may lead to the generation of low-quality supplementary samples. Therefore, we propose a supervised contrast learning text classification model based on data quality augment (DQA). First, dynamic training is used to screen high-quality datasets containing beneficial information for model training. The selected data is then augmented with data based on important words with tag information. To obtain a better text representation to serve the downstream classification task, we employ a standard supervised contrast loss to train the model. Finally, we conduct experiments on five text classification datasets to validate the effectiveness of our model. In addition, ablation experiments are conducted to verify the impact of each module on classification.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":"9 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3653300","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Token-level data augmentation generates text samples by modifying the words of the sentences. However, data that are not easily classified can negatively affect the model. In particular, not considering the role of keywords when performing random augmentation operations on samples may lead to the generation of low-quality supplementary samples. Therefore, we propose a supervised contrast learning text classification model based on data quality augment (DQA). First, dynamic training is used to screen high-quality datasets containing beneficial information for model training. The selected data is then augmented with data based on important words with tag information. To obtain a better text representation to serve the downstream classification task, we employ a standard supervised contrast loss to train the model. Finally, we conduct experiments on five text classification datasets to validate the effectiveness of our model. In addition, ablation experiments are conducted to verify the impact of each module on classification.

基于数据质量增强的有监督对比学习文本分类模型
标记级数据增强通过修改句子中的单词来生成文本样本。然而,不易分类的数据会对模型产生负面影响。特别是,在对样本进行随机扩增操作时,如果不考虑关键词的作用,可能会导致生成低质量的补充样本。因此,我们提出了一种基于数据质量增强(DQA)的有监督对比学习文本分类模型。首先,利用动态训练筛选出包含有益信息的高质量数据集,用于模型训练。然后,根据带有标签信息的重要词语对所选数据进行增强。为了获得更好的文本表示以服务于下游分类任务,我们采用了标准的监督对比度损失来训练模型。最后,我们在五个文本分类数据集上进行了实验,以验证模型的有效性。此外,我们还进行了消减实验,以验证每个模块对分类的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
15.00%
发文量
241
期刊介绍: The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to: -Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc. -Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc. -Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition. -Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc. -Machine Translation involving Asian or low-resource languages. -Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc. -Information Extraction and Filtering: including automatic abstraction, user profiling, etc. -Speech processing: including text-to-speech synthesis and automatic speech recognition. -Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc. -Cross-lingual information processing involving Asian or low-resource languages. -Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信