{"title":"Synergy of Hydration and Microstructural Properties of Sustainable Cement Mortar Supplemented with Industrial By-Products","authors":"E. P. Sumukh, B. B. Das, Salim Barbhuiya","doi":"10.1007/s40999-024-00950-9","DOIUrl":null,"url":null,"abstract":"<p>The present research assists in resolving the issues allied with the disposal of industrial solid wastes/industrial by-products (IBPs) by developing sustainable IBPs based cement mortars. The applicability of IBPs as a feasible alternative to river sand in cement mortar has been evaluated by investigating the synergy among the ingredients, resulting engineering properties and microstructural developments at early and late curing ages. The study could effectively substitute 30% volume of river sand with bottom ash and 50% in the case of slag sand mortars. The experimental outcomes disclose that the practice of IBPs as fine aggregate enhances the engineering properties of mortar and the optimum replacement level lies at 10% and 40% usage of bottom ash and slag sand, respectively. The advanced characterization studies and particle packing density illustrate the refinement of pores by void filing action and accumulation of additional hydration products through secondary hydration reactions. The consumption of portlandite followed by increased hydration products formation observed through thermogravimetric analysis, X-ray diffraction analysis and energy dispersive X-ray spectroscopy that confirmed the contribution of finer fractions of IBPs to secondary hydration reactions. This constructive development was also observed from the lowering of wavenumber corresponding to Si–O–Si/Al vibration bands in Fourier transform infrared spectroscopy spectra. The improved microstructure resulted in enhancing the compressive strength by 9.01% and 18.18% in optimized bottom ash and slag sand mortars, respectively at the curing age of 120 days. Similarly, the water absorption reduced by 1.03% and 1.24% in bottom ash and slag sand mortars, respectively.</p>","PeriodicalId":50331,"journal":{"name":"International Journal of Civil Engineering","volume":"2014 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40999-024-00950-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The present research assists in resolving the issues allied with the disposal of industrial solid wastes/industrial by-products (IBPs) by developing sustainable IBPs based cement mortars. The applicability of IBPs as a feasible alternative to river sand in cement mortar has been evaluated by investigating the synergy among the ingredients, resulting engineering properties and microstructural developments at early and late curing ages. The study could effectively substitute 30% volume of river sand with bottom ash and 50% in the case of slag sand mortars. The experimental outcomes disclose that the practice of IBPs as fine aggregate enhances the engineering properties of mortar and the optimum replacement level lies at 10% and 40% usage of bottom ash and slag sand, respectively. The advanced characterization studies and particle packing density illustrate the refinement of pores by void filing action and accumulation of additional hydration products through secondary hydration reactions. The consumption of portlandite followed by increased hydration products formation observed through thermogravimetric analysis, X-ray diffraction analysis and energy dispersive X-ray spectroscopy that confirmed the contribution of finer fractions of IBPs to secondary hydration reactions. This constructive development was also observed from the lowering of wavenumber corresponding to Si–O–Si/Al vibration bands in Fourier transform infrared spectroscopy spectra. The improved microstructure resulted in enhancing the compressive strength by 9.01% and 18.18% in optimized bottom ash and slag sand mortars, respectively at the curing age of 120 days. Similarly, the water absorption reduced by 1.03% and 1.24% in bottom ash and slag sand mortars, respectively.
期刊介绍:
International Journal of Civil Engineering, The official publication of Iranian Society of Civil Engineering and Iran University of Science and Technology is devoted to original and interdisciplinary, peer-reviewed papers on research related to the broad spectrum of civil engineering with similar emphasis on all topics.The journal provides a forum for the International Civil Engineering Community to present and discuss matters of major interest e.g. new developments in civil regulations, The topics are included but are not necessarily restricted to :- Structures- Geotechnics- Transportation- Environment- Earthquakes- Water Resources- Construction Engineering and Management, and New Materials.