{"title":"Total Variation Error Bounds for the Approximation of the Invariant Distribution of Parabolic Semilinear SPDEs Using the Standard Euler Scheme","authors":"Charles-Edouard Bréhier","doi":"10.1007/s11118-024-10132-w","DOIUrl":null,"url":null,"abstract":"<p>We study the long time behavior of the standard linear implicit Euler scheme for the discretization of a class of erdogic parabolic semilinear SPDEs driven by additive space-time white noise. When the nonlinearity is a gradient, the invariant distribution is of Gibbs form, but it cannot be approximated in the total variation sense by the standard Euler scheme. We prove that the numerical scheme gives an approximation in the total variation sense of a modified Gibbs distribution, which is the invariant distribution of a modified SPDE. The modified distribution and the modified equation depend on the time-step size. This original result goes beyond existing results in the literature where the weak error estimates for the approximation of the invariant distribution do not imply convergence in total variation when the time-step size vanishes. The proof of the main result requires regularity properties of associated infinite dimensional Kolmogorov equations.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"148 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10132-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the long time behavior of the standard linear implicit Euler scheme for the discretization of a class of erdogic parabolic semilinear SPDEs driven by additive space-time white noise. When the nonlinearity is a gradient, the invariant distribution is of Gibbs form, but it cannot be approximated in the total variation sense by the standard Euler scheme. We prove that the numerical scheme gives an approximation in the total variation sense of a modified Gibbs distribution, which is the invariant distribution of a modified SPDE. The modified distribution and the modified equation depend on the time-step size. This original result goes beyond existing results in the literature where the weak error estimates for the approximation of the invariant distribution do not imply convergence in total variation when the time-step size vanishes. The proof of the main result requires regularity properties of associated infinite dimensional Kolmogorov equations.
期刊介绍:
The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.