Total Variation Error Bounds for the Approximation of the Invariant Distribution of Parabolic Semilinear SPDEs Using the Standard Euler Scheme

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Charles-Edouard Bréhier
{"title":"Total Variation Error Bounds for the Approximation of the Invariant Distribution of Parabolic Semilinear SPDEs Using the Standard Euler Scheme","authors":"Charles-Edouard Bréhier","doi":"10.1007/s11118-024-10132-w","DOIUrl":null,"url":null,"abstract":"<p>We study the long time behavior of the standard linear implicit Euler scheme for the discretization of a class of erdogic parabolic semilinear SPDEs driven by additive space-time white noise. When the nonlinearity is a gradient, the invariant distribution is of Gibbs form, but it cannot be approximated in the total variation sense by the standard Euler scheme. We prove that the numerical scheme gives an approximation in the total variation sense of a modified Gibbs distribution, which is the invariant distribution of a modified SPDE. The modified distribution and the modified equation depend on the time-step size. This original result goes beyond existing results in the literature where the weak error estimates for the approximation of the invariant distribution do not imply convergence in total variation when the time-step size vanishes. The proof of the main result requires regularity properties of associated infinite dimensional Kolmogorov equations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10132-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the long time behavior of the standard linear implicit Euler scheme for the discretization of a class of erdogic parabolic semilinear SPDEs driven by additive space-time white noise. When the nonlinearity is a gradient, the invariant distribution is of Gibbs form, but it cannot be approximated in the total variation sense by the standard Euler scheme. We prove that the numerical scheme gives an approximation in the total variation sense of a modified Gibbs distribution, which is the invariant distribution of a modified SPDE. The modified distribution and the modified equation depend on the time-step size. This original result goes beyond existing results in the literature where the weak error estimates for the approximation of the invariant distribution do not imply convergence in total variation when the time-step size vanishes. The proof of the main result requires regularity properties of associated infinite dimensional Kolmogorov equations.

使用标准欧拉方案逼近抛物线半线性 SPDE 的不变分布的总变差误差边界
我们研究了标准线性隐式欧拉方案对一类由加性时空白噪声驱动的erdogic抛物线半线性SPDEs离散化的长时间行为。当非线性为梯度时,不变分布为吉布斯形式,但标准欧拉方案无法在总变化意义上近似它。我们证明,数值方案给出了修正吉布斯分布在总变化意义上的近似值,而修正吉布斯分布是修正 SPDE 的不变分布。修正分布和修正方程取决于时间步长。这一原创性结果超越了文献中的现有结果,即当时间步长消失时,不变分布近似的弱误差估计并不意味着总变化的收敛。主要结果的证明需要相关无限维 Kolmogorov 方程的正则特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信