Floquet-Bloch functions on non-simply connected manifolds, the Aharonov-Bohm fluxes, and conformal invariants of immersed surfaces

I. A. Taimanov
{"title":"Floquet-Bloch functions on non-simply connected manifolds, the Aharonov-Bohm fluxes, and conformal invariants of immersed surfaces","authors":"I. A. Taimanov","doi":"arxiv-2403.11161","DOIUrl":null,"url":null,"abstract":"Spectral (Bloch) varieties of multidimensional differential operators on\nnon-simply connected manifolds are defined. In their terms it is given a\ndescription of the analytical dependence of the spectra of magnetic Laplacians\non non-simply connected manifolds on the values of the Aharonov-Bohm fluxes and\na construction of analogues of spectral curves for two-dimensional Dirac\noperators on Riemann surfaces and, thereby, new conformal invariants of\nimmersions of surfaces into 3- and 4-dimensional Euclidean spaces.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.11161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spectral (Bloch) varieties of multidimensional differential operators on non-simply connected manifolds are defined. In their terms it is given a description of the analytical dependence of the spectra of magnetic Laplacians on non-simply connected manifolds on the values of the Aharonov-Bohm fluxes and a construction of analogues of spectral curves for two-dimensional Dirac operators on Riemann surfaces and, thereby, new conformal invariants of immersions of surfaces into 3- and 4-dimensional Euclidean spaces.
非简单连接流形上的 Floquet-Bloch 函数、Aharonov-Bohm 通量和浸没曲面的保角不变式
定义了非简单连接流形上多维微分算子的谱(布洛赫)品种。用它们来描述非简单相连流形上的磁拉普拉奇谱对阿哈诺夫-玻姆通量值的分析依赖性,并构建黎曼曲面上二维狄拉克算子谱曲线的类似物,从而为曲面进入三维和四维欧几里得空间的浸没提供新的保角不变式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信