{"title":"Investigation of Coal Gangue on Mitigating Slagging of Wheat Straw","authors":"Xiangru Jia, Zhenbo Cheng, Feng Yun, Yaqian Ding, Xia Yue, Shaoqing Liu, Jian Zhang","doi":"10.3103/S0361521923080049","DOIUrl":null,"url":null,"abstract":"<p>The effect of adding coal gangue (CG) under different ratios, temperatures and atmospheres on the slagging of wheat straw (WS) combustion was studied in a tubular furnace. At 800°C, there was obvious agglomeration and melting on the ash surface, caused by the reaction of alkali metal elements and alkali earth metal elements with SiO<sub>2</sub> to form low melting point silicate substance, resulted in serious slagging. After adding CG, Al<sub>2</sub>O<sub>3</sub> in CG reacted with SiO<sub>2</sub> to form high melting point silicate minerals, which reduced the tendency of biomass slagging. According to the slagging discriminant results of empirical index, sample with 20% CG added combustion in air atmosphere has the lowest slagging tendency. The FactSage results showed that after adding CG, in the whole temperature range, there was no significant difference between the O<sub>2</sub>/CO<sub>2</sub> atmosphere and the air atmosphere, but the phase contents were different.</p>","PeriodicalId":779,"journal":{"name":"Solid Fuel Chemistry","volume":"57 7","pages":"502 - 512"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Fuel Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S0361521923080049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of adding coal gangue (CG) under different ratios, temperatures and atmospheres on the slagging of wheat straw (WS) combustion was studied in a tubular furnace. At 800°C, there was obvious agglomeration and melting on the ash surface, caused by the reaction of alkali metal elements and alkali earth metal elements with SiO2 to form low melting point silicate substance, resulted in serious slagging. After adding CG, Al2O3 in CG reacted with SiO2 to form high melting point silicate minerals, which reduced the tendency of biomass slagging. According to the slagging discriminant results of empirical index, sample with 20% CG added combustion in air atmosphere has the lowest slagging tendency. The FactSage results showed that after adding CG, in the whole temperature range, there was no significant difference between the O2/CO2 atmosphere and the air atmosphere, but the phase contents were different.
期刊介绍:
The journal publishes theoretical and applied articles on the chemistry and physics of solid fuels and carbonaceous materials. It addresses the composition, structure, and properties of solid fuels. The aim of the published articles is to demonstrate how novel discoveries, developments, and theories may be used in improved analysis and design of new types of fuels, chemicals, and by-products. The journal is particularly concerned with technological aspects of various chemical conversion processes and includes papers related to geochemistry, petrology and systematization of fossil fuels, their beneficiation and preparation for processing, the processes themselves, and the ultimate recovery of the liquid or gaseous end products.