Amr A. Abd El-Mageed, Amr A. Abohany, Asmaa H. Ali, Khalid M. Hosny
{"title":"An adaptive hybrid african vultures-aquila optimizer with Xgb-Tree algorithm for fake news detection","authors":"Amr A. Abd El-Mageed, Amr A. Abohany, Asmaa H. Ali, Khalid M. Hosny","doi":"10.1186/s40537-024-00895-9","DOIUrl":null,"url":null,"abstract":"<p>Online platforms and social networking have increased in the contemporary years. They are now a major news source worldwide, leading to the online proliferation of Fake News (FNs). These FNs are alarming because they fundamentally reshape public opinion, which may cause customers to leave these online platforms, threatening the reputations of several organizations and industries. This rapid dissemination of FNs makes it imperative for automated systems to detect them, encouraging many researchers to propose various systems to classify news articles and detect FNs automatically. In this paper, a Fake News Detection (FND) methodology is presented based on an effective IBAVO-AO algorithm, which stands for hybridization of African Vultures Optimization (AVO) and Aquila Optimization (AO) algorithms, with an extreme gradient boosting Tree (Xgb-Tree) classifier. The suggested methodology involves three main phases: Initially, the unstructured FNs dataset is analyzed, and the essential features are extracted by tokenizing, encoding, and padding the input news words into a sequence of integers utilizing the GLOVE approach. Then, the extracted features are filtered using the effective Relief algorithm to select only the appropriate ones. Finally, the recovered features are used to classify the news items using the suggested IBAVO-AO algorithm based on the Xgb-Tree classifier. Hence, the suggested methodology is distinguished from prior models in that it performs automatic data pre-processing, optimization, and classification tasks. The proposed methodology is carried out on the ISOT-FNs dataset, containing more than 44 thousand multiple news articles divided into truthful and fake. We validated the proposed methodology’s reliability by examining numerous evaluation metrics involving accuracy, fitness values, the number of selected features, Kappa, Precision, Recall, F1-score, Specificity, Sensitivity, ROC_AUC, and MCC. Then, the proposed methodology is compared against the most common meta-heuristic optimization algorithms utilizing the ISOT-FNs. The experimental results reveal that the suggested methodology achieved optimal classification accuracy and F1-score and successfully categorized more than 92.5% of news articles compared to its peers. This study will assist researchers in expanding their understanding of meta-heuristic optimization algorithms applications for FND.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"38 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00895-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Online platforms and social networking have increased in the contemporary years. They are now a major news source worldwide, leading to the online proliferation of Fake News (FNs). These FNs are alarming because they fundamentally reshape public opinion, which may cause customers to leave these online platforms, threatening the reputations of several organizations and industries. This rapid dissemination of FNs makes it imperative for automated systems to detect them, encouraging many researchers to propose various systems to classify news articles and detect FNs automatically. In this paper, a Fake News Detection (FND) methodology is presented based on an effective IBAVO-AO algorithm, which stands for hybridization of African Vultures Optimization (AVO) and Aquila Optimization (AO) algorithms, with an extreme gradient boosting Tree (Xgb-Tree) classifier. The suggested methodology involves three main phases: Initially, the unstructured FNs dataset is analyzed, and the essential features are extracted by tokenizing, encoding, and padding the input news words into a sequence of integers utilizing the GLOVE approach. Then, the extracted features are filtered using the effective Relief algorithm to select only the appropriate ones. Finally, the recovered features are used to classify the news items using the suggested IBAVO-AO algorithm based on the Xgb-Tree classifier. Hence, the suggested methodology is distinguished from prior models in that it performs automatic data pre-processing, optimization, and classification tasks. The proposed methodology is carried out on the ISOT-FNs dataset, containing more than 44 thousand multiple news articles divided into truthful and fake. We validated the proposed methodology’s reliability by examining numerous evaluation metrics involving accuracy, fitness values, the number of selected features, Kappa, Precision, Recall, F1-score, Specificity, Sensitivity, ROC_AUC, and MCC. Then, the proposed methodology is compared against the most common meta-heuristic optimization algorithms utilizing the ISOT-FNs. The experimental results reveal that the suggested methodology achieved optimal classification accuracy and F1-score and successfully categorized more than 92.5% of news articles compared to its peers. This study will assist researchers in expanding their understanding of meta-heuristic optimization algorithms applications for FND.
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.