{"title":"Passively harmonic mode-locked erbium-doped fiber laser with a gold nanofilm saturable absorber","authors":"Changjian Lv, Fanchao Meng, Tianqi Zhang, Junjie Wang, Qi Yan, Zhixu Jia, Weiping Qin, and Guanshi Qin","doi":"10.1364/ome.521096","DOIUrl":null,"url":null,"abstract":"We demonstrate a 1.5 GHz harmonic mode-locked erbium-doped fiber laser by incorporating gold nanofilm as a saturable absorber (SA). The high-quality gold nanofilm SA fabricated by the physical vapor deposition method possesses a high modulation depth of 12.9% and a low saturation intensity of 1.69 MW/cm<sup>2</sup> at 1.56 µm, facilitating the generation of harmonic mode-locking. The fundamental mode-locked operation was obtained at 1564.7 nm, with a pulse duration of 586 fs and a repetition rate of 34.235 MHz. At the pump power of 610 mW, 44th-order harmonic mode-locking with a repetition rate of 1.506 GHz was achieved, which is the highest yet reported in mode-locked fiber lasers using gold nanomaterials as SAs. Moreover, the gold nanofilm-based harmonic mode-locked fiber laser shows relatively high signal-to-noise ratios, high output power, and good stability. These results highlight the advantage of the gold nanofilm-based SA in realizing high repetition rate laser sources.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"26 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.521096","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate a 1.5 GHz harmonic mode-locked erbium-doped fiber laser by incorporating gold nanofilm as a saturable absorber (SA). The high-quality gold nanofilm SA fabricated by the physical vapor deposition method possesses a high modulation depth of 12.9% and a low saturation intensity of 1.69 MW/cm2 at 1.56 µm, facilitating the generation of harmonic mode-locking. The fundamental mode-locked operation was obtained at 1564.7 nm, with a pulse duration of 586 fs and a repetition rate of 34.235 MHz. At the pump power of 610 mW, 44th-order harmonic mode-locking with a repetition rate of 1.506 GHz was achieved, which is the highest yet reported in mode-locked fiber lasers using gold nanomaterials as SAs. Moreover, the gold nanofilm-based harmonic mode-locked fiber laser shows relatively high signal-to-noise ratios, high output power, and good stability. These results highlight the advantage of the gold nanofilm-based SA in realizing high repetition rate laser sources.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.