{"title":"To the Theory of Helical Turbulence of a Nonmagnetic Astrophysical Disk. Formation of Large-Scale Vortex Structures","authors":"A. V. Kolesnichenko","doi":"10.1134/S0038094624700229","DOIUrl":null,"url":null,"abstract":"<p>The paper presents a closed system of three-dimensional hydrodynamic equations of averaged motion, intended for modeling spiral turbulence in a rotating astrophysical disk. Diffusion equations for the averaged vortex and an equation for the transport of the integral vortex helicity are derived. A general concept of the emergence of energy-intensive mesoscale coherent vortex structures in a thermodynamically open turbulent chaos subsystem, associated with the realization of a reverse cascade of kinetic energy in mirror-asymmetrical disk turbulence, is formulated. It is shown that negative viscosity in a rotating three-dimensional disk system is apparently a manifestation of cascade processes in helical turbulence, when reverse energy transfer from small vortices to larger ones takes place. It is also shown that the relatively long decay of turbulence in the disk is associated with the lack of mirror symmetry of the anisotropic field of turbulent velocities about its equatorial plane. The work comprises a review aimed at improving new models of astrophysical nonmagnetic disks, for which the effects of helical turbulence play a decisive role.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":"58 4","pages":"427 - 449"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0038094624700229","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents a closed system of three-dimensional hydrodynamic equations of averaged motion, intended for modeling spiral turbulence in a rotating astrophysical disk. Diffusion equations for the averaged vortex and an equation for the transport of the integral vortex helicity are derived. A general concept of the emergence of energy-intensive mesoscale coherent vortex structures in a thermodynamically open turbulent chaos subsystem, associated with the realization of a reverse cascade of kinetic energy in mirror-asymmetrical disk turbulence, is formulated. It is shown that negative viscosity in a rotating three-dimensional disk system is apparently a manifestation of cascade processes in helical turbulence, when reverse energy transfer from small vortices to larger ones takes place. It is also shown that the relatively long decay of turbulence in the disk is associated with the lack of mirror symmetry of the anisotropic field of turbulent velocities about its equatorial plane. The work comprises a review aimed at improving new models of astrophysical nonmagnetic disks, for which the effects of helical turbulence play a decisive role.
期刊介绍:
Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.