Exploring the Low-Dose Limit for Focal Hepatic Lesion Detection with a Deep Learning-Based CT Reconstruction Algorithm: A Simulation Study on Patient Images
IF 2.9 2区 工程技术Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"Exploring the Low-Dose Limit for Focal Hepatic Lesion Detection with a Deep Learning-Based CT Reconstruction Algorithm: A Simulation Study on Patient Images","authors":"Yongchun You, Sihua Zhong, Guozhi Zhang, Yuting Wen, Dian Guo, Wanjiang Li, Zhenlin Li","doi":"10.1007/s10278-024-01080-3","DOIUrl":null,"url":null,"abstract":"<p>This study aims to investigate the maximum achievable dose reduction for applying a new deep learning-based reconstruction algorithm, namely the artificial intelligence iterative reconstruction (AIIR), in computed tomography (CT) for hepatic lesion detection. A total of 40 patients with 98 clinically confirmed hepatic lesions were retrospectively included. The mean volume CT dose index was 13.66 ± 1.73 mGy in routine-dose portal venous CT examinations, where the images were originally obtained with hybrid iterative reconstruction (HIR). Low-dose simulations were performed in projection domain for 40%-, 20%-, and 10%-dose levels, followed by reconstruction using both HIR and AIIR. Two radiologists were asked to detect hepatic lesion on each set of low-dose image in separate sessions. Qualitative metrics including lesion conspicuity, diagnostic confidence, and overall image quality were evaluated using a 5-point scale. The contrast-to-noise ratio (CNR) for lesion was also calculated for quantitative assessment. The lesion CNR on AIIR at reduced doses were significantly higher than that on routine-dose HIR (all <i>p</i> < 0.05). Lower qualitative image quality was observed as the radiation dose reduced, while there were no significant differences between 40%-dose AIIR and routine-dose HIR images. The lesion detection rate was 100%, 98% (96/98), and 73.5% (72/98) on 40%-, 20%-, and 10%-dose AIIR, respectively, whereas it was 98% (96/98), 73.5% (72/98), and 40% (39/98) on the corresponding low-dose HIR, respectively. AIIR outperformed HIR in simulated low-dose CT examinations of the liver. The use of AIIR allows up to 60% dose reduction for lesion detection while maintaining comparable image quality to routine-dose HIR.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"46 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-01080-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to investigate the maximum achievable dose reduction for applying a new deep learning-based reconstruction algorithm, namely the artificial intelligence iterative reconstruction (AIIR), in computed tomography (CT) for hepatic lesion detection. A total of 40 patients with 98 clinically confirmed hepatic lesions were retrospectively included. The mean volume CT dose index was 13.66 ± 1.73 mGy in routine-dose portal venous CT examinations, where the images were originally obtained with hybrid iterative reconstruction (HIR). Low-dose simulations were performed in projection domain for 40%-, 20%-, and 10%-dose levels, followed by reconstruction using both HIR and AIIR. Two radiologists were asked to detect hepatic lesion on each set of low-dose image in separate sessions. Qualitative metrics including lesion conspicuity, diagnostic confidence, and overall image quality were evaluated using a 5-point scale. The contrast-to-noise ratio (CNR) for lesion was also calculated for quantitative assessment. The lesion CNR on AIIR at reduced doses were significantly higher than that on routine-dose HIR (all p < 0.05). Lower qualitative image quality was observed as the radiation dose reduced, while there were no significant differences between 40%-dose AIIR and routine-dose HIR images. The lesion detection rate was 100%, 98% (96/98), and 73.5% (72/98) on 40%-, 20%-, and 10%-dose AIIR, respectively, whereas it was 98% (96/98), 73.5% (72/98), and 40% (39/98) on the corresponding low-dose HIR, respectively. AIIR outperformed HIR in simulated low-dose CT examinations of the liver. The use of AIIR allows up to 60% dose reduction for lesion detection while maintaining comparable image quality to routine-dose HIR.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.