{"title":"Filling systems on surfaces","authors":"Shiv Parsad, Bidyut Sanki","doi":"10.1142/s1793525324500055","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span> be a closed orientable surface of genus <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi></math></span><span></span>. A set <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Ω</mi><mo>=</mo><mo stretchy=\"false\">{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo stretchy=\"false\">}</mo></math></span><span></span> of pairwise non-homotopic simple closed curves on <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span> is called a <i>filling system</i> or simply be <i>filling</i> of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span>, if <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub><mo stretchy=\"false\">∖</mo><mi mathvariant=\"normal\">Ω</mi></math></span><span></span> is a disjoint union of <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi></math></span><span></span> topological discs for some <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>≥</mo><mn>1</mn></math></span><span></span>. A filling system is called <i>minimally intersecting</i>, if the total number of intersection points of the curves is minimum, or equivalently <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>=</mo><mn>1</mn></math></span><span></span>. The <i>size</i> of a filling system is defined as the number of its elements. We prove that the maximum possible size of a minimally intersecting filling system is <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>g</mi></math></span><span></span>. Next, we show that for <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo>≥</mo><mn>2</mn><mstyle><mtext> and </mtext></mstyle><mn>2</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mn>2</mn><mi>g</mi></math></span><span></span> with <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>g</mi><mo>,</mo><mi>s</mi><mo stretchy=\"false\">)</mo><mo>≠</mo><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math></span><span></span>, there exists a minimally intersecting filling system on <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span> of size <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>. Furthermore, we study geometric intersection number of curves in a minimally intersecting filling system. For <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, we show that for a minimally intersecting filling system <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span> of size <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>, the <i>geometric intersection numbers</i> satisfy <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mo>max</mo><mo stretchy=\"false\">{</mo><mi>i</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo>|</mo><mi>i</mi><mo>≠</mo><mi>j</mi><mo stretchy=\"false\">}</mo><mo>≤</mo><mn>2</mn><mi>g</mi><mo stretchy=\"false\">−</mo><mi>s</mi><mo stretchy=\"false\">+</mo><mn>1</mn></math></span><span></span>, and for each such <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span> there exists a minimally intersecting filling system <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Ω</mi><mo>=</mo><mo stretchy=\"false\">{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo stretchy=\"false\">}</mo></math></span><span></span> such that <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><mo>max</mo><mo stretchy=\"false\">{</mo><mi>i</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo>|</mo><mi>i</mi><mo>≠</mo><mi>j</mi><mo stretchy=\"false\">}</mo><mo>=</mo><mn>2</mn><mi>g</mi><mo stretchy=\"false\">−</mo><mi>s</mi><mo stretchy=\"false\">+</mo><mn>1</mn></math></span><span></span>.</p>","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525324500055","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a closed orientable surface of genus . A set of pairwise non-homotopic simple closed curves on is called a filling system or simply be filling of , if is a disjoint union of topological discs for some . A filling system is called minimally intersecting, if the total number of intersection points of the curves is minimum, or equivalently . The size of a filling system is defined as the number of its elements. We prove that the maximum possible size of a minimally intersecting filling system is . Next, we show that for with , there exists a minimally intersecting filling system on of size . Furthermore, we study geometric intersection number of curves in a minimally intersecting filling system. For , we show that for a minimally intersecting filling system of size , the geometric intersection numbers satisfy , and for each such there exists a minimally intersecting filling system such that .
期刊介绍:
This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.