Scattering theory and an index theorem on the radial part of SL(2, ℝ)

IF 0.5 3区 数学 Q3 MATHEMATICS
H. Inoue, S. Richard
{"title":"Scattering theory and an index theorem on the radial part of SL(2, ℝ)","authors":"H. Inoue, S. Richard","doi":"10.1142/s179352532450002x","DOIUrl":null,"url":null,"abstract":"<p>We present the spectral and scattering theory of the Casimir operator acting on radial functions in <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">(</mo><mstyle><mtext mathvariant=\"normal\">SL</mtext></mstyle><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mi>ℝ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span>. After a suitable decomposition, these investigations consist in studying a family of differential operators acting on the half-line. For these operators, explicit expressions can be found for the resolvent, for the spectral density, and for the Møller wave operators, in terms of the Gauss hypergeometric function. An index theorem is also introduced and discussed. The resulting equality, generically called Levinson’s theorem, links various asymptotic behaviors of the hypergeometric function. This work is a first attempt to connect group theory, special functions, scattering theory, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>C</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup></math></span><span></span>-algebras, and Levinson’s theorem.</p>","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s179352532450002x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present the spectral and scattering theory of the Casimir operator acting on radial functions in L2(SL(2,)). After a suitable decomposition, these investigations consist in studying a family of differential operators acting on the half-line. For these operators, explicit expressions can be found for the resolvent, for the spectral density, and for the Møller wave operators, in terms of the Gauss hypergeometric function. An index theorem is also introduced and discussed. The resulting equality, generically called Levinson’s theorem, links various asymptotic behaviors of the hypergeometric function. This work is a first attempt to connect group theory, special functions, scattering theory, C-algebras, and Levinson’s theorem.

散射理论和 SL(2, ℝ) 径向部分的指数定理
我们介绍了作用于 L2(SL(2,ℝ) 中径向函数的卡西米尔算子的谱和散射理论。)经过适当分解后,这些研究包括研究作用于半线的微分算子族。对于这些算子,可以根据高斯超几何函数找到解析量、谱密度和莫勒波算子的明确表达式。此外,还引入并讨论了一个指数定理。由此产生的等式一般称为列文森定理,它将超几何函数的各种渐近行为联系起来。这项研究首次尝试将群论、特殊函数、散射理论、C∗-代数和列文森定理联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信