A conjecture of Mallows and Sloane with the universal denominator of Hilbert series

IF 1 4区 数学 Q1 MATHEMATICS
Yang Zhang, Jizhu Nan, Yongsheng Ma
{"title":"A conjecture of Mallows and Sloane with the universal denominator of Hilbert series","authors":"Yang Zhang, Jizhu Nan, Yongsheng Ma","doi":"10.1515/math-2024-0001","DOIUrl":null,"url":null,"abstract":"A conjecture of Mallows and Sloane conveys the dominance of Hilbert series for finding basic invariants of finite linear groups if the Hilbert series of the invariant ring is of a certain explicit canonical form. However, the conjecture does not hold in general by a well-known counterexample of Stanley. In this article, we give a constraint on lower bounds for the degrees of homogeneous system of parameters of rings of invariants of finite linear groups depending on the universal denominator of Hilbert series defined by Derksen. We consider the conjecture with the universal denominator on abelian groups and provide some criteria guaranteeing the existence of homogeneous system of parameters of certain degrees. In this case, Stanley’s counterexample could be avoided, and the homogeneous system of parameters is optimal.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"27 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A conjecture of Mallows and Sloane conveys the dominance of Hilbert series for finding basic invariants of finite linear groups if the Hilbert series of the invariant ring is of a certain explicit canonical form. However, the conjecture does not hold in general by a well-known counterexample of Stanley. In this article, we give a constraint on lower bounds for the degrees of homogeneous system of parameters of rings of invariants of finite linear groups depending on the universal denominator of Hilbert series defined by Derksen. We consider the conjecture with the universal denominator on abelian groups and provide some criteria guaranteeing the existence of homogeneous system of parameters of certain degrees. In this case, Stanley’s counterexample could be avoided, and the homogeneous system of parameters is optimal.
马洛斯和斯隆关于希尔伯特级数通用分母的猜想
马洛斯和斯隆提出的一个猜想表明,如果不变环的希尔伯特数列具有某种明确的规范形式,那么希尔伯特数列在寻找有限线性群的基本不变式时具有优势。然而,根据斯坦利的一个著名反例,该猜想一般不成立。在这篇文章中,我们给出了有限线性群不变环参数同系度的下界约束,它取决于德克森定义的希尔伯特级数的通用分母。我们考虑了无差别群上的公分母猜想,并提供了一些保证一定度数的参数同质系统存在的标准。在这种情况下,斯坦利反例可以避免,参数同质系统是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信