Experimental and numerical study of the three-dimensional temperature field in the arch ribs of the reinforced concrete ribbed arch bridge during construction
IF 2.1 4区 工程技术Q2 CONSTRUCTION & BUILDING TECHNOLOGY
{"title":"Experimental and numerical study of the three-dimensional temperature field in the arch ribs of the reinforced concrete ribbed arch bridge during construction","authors":"Zhongchu Tian, Zujun Zhang, Zhengqian Wu, Wenping Peng, Binlin Xu","doi":"10.1177/13694332241240661","DOIUrl":null,"url":null,"abstract":"The unique structural design of an arch ring featuring varying inclination angles for individual segments causes variations in the longitudinal distribution of the temperature field d along the arch axis. This study aims to enhance the understanding of temperature fields in reinforced concrete (RC) arch bridges with diverse arch ring structural configurations during their construction phases. A comprehensive investigation into the three-dimensional distribution pattern of solar-induced temperature fields within arch ribs during the construction of RC ribbed arch bridges was conducted. A field test specifically measuring the temperature distribution across arch rib cross-sections was conducted on-site, involving an RC arch bridge constructed using the cable-stayed cantilever cast in situ method. Analyzing the monitored on-site temperature data revealed the distribution characteristics of temperature fields at the arch foot cross-section under solar radiation. By comparing these findings with international standards, a vertical temperature gradient fitting model for arch rib cross-sections under solar radiation was formulated. Drawing upon meteorological records and solar radiation principles, an adaptive numerical simulation finite element model was developed to depict the temperature field within an arch rib section. This model was rigorously verified. Subsequently, a comprehensive analysis of the three-dimensional temperature field of the arch rib under solar radiation was performed. Additionally, a three-dimensional temperature gradient fitting model was proposed, accounting for the longitudinal inclination of the bridge.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241240661","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The unique structural design of an arch ring featuring varying inclination angles for individual segments causes variations in the longitudinal distribution of the temperature field d along the arch axis. This study aims to enhance the understanding of temperature fields in reinforced concrete (RC) arch bridges with diverse arch ring structural configurations during their construction phases. A comprehensive investigation into the three-dimensional distribution pattern of solar-induced temperature fields within arch ribs during the construction of RC ribbed arch bridges was conducted. A field test specifically measuring the temperature distribution across arch rib cross-sections was conducted on-site, involving an RC arch bridge constructed using the cable-stayed cantilever cast in situ method. Analyzing the monitored on-site temperature data revealed the distribution characteristics of temperature fields at the arch foot cross-section under solar radiation. By comparing these findings with international standards, a vertical temperature gradient fitting model for arch rib cross-sections under solar radiation was formulated. Drawing upon meteorological records and solar radiation principles, an adaptive numerical simulation finite element model was developed to depict the temperature field within an arch rib section. This model was rigorously verified. Subsequently, a comprehensive analysis of the three-dimensional temperature field of the arch rib under solar radiation was performed. Additionally, a three-dimensional temperature gradient fitting model was proposed, accounting for the longitudinal inclination of the bridge.
期刊介绍:
Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.