Jiangwan He, Mehdi Serati, Martin Veidt, Arthur De Alwis
{"title":"Determining rock crack stress thresholds using ultrasonic through-transmission measurements","authors":"Jiangwan He, Mehdi Serati, Martin Veidt, Arthur De Alwis","doi":"10.1007/s40789-024-00669-x","DOIUrl":null,"url":null,"abstract":"<p>The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures. While various strain-based methods have been developed for the estimation of this critical design parameter, such methods are destructive and often requires subjective interpretations of the stress–strain curves, particularly in rocks with pre-existing microcracks or high porosity. This study explore the applicability of non-destructive ultrasonic through-transmission methods for determining rock damage levels by assessing the changes in transmitted signal characteristics during loading. The change in velocity, amplitude, dominant frequency, and root-mean-square voltage are investigated with four different rock types including marble, sandstone, granite, and basalt under various stress levels. Results suggest the rate of signal variations can be reliably used to estimate crack closure and crack initiation stress levels across the tested rocks before failure. Comparison of the results between the conventional techniques and the new proposed methods based on ultrasonic monitoring are further discussed.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"26 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-024-00669-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures. While various strain-based methods have been developed for the estimation of this critical design parameter, such methods are destructive and often requires subjective interpretations of the stress–strain curves, particularly in rocks with pre-existing microcracks or high porosity. This study explore the applicability of non-destructive ultrasonic through-transmission methods for determining rock damage levels by assessing the changes in transmitted signal characteristics during loading. The change in velocity, amplitude, dominant frequency, and root-mean-square voltage are investigated with four different rock types including marble, sandstone, granite, and basalt under various stress levels. Results suggest the rate of signal variations can be reliably used to estimate crack closure and crack initiation stress levels across the tested rocks before failure. Comparison of the results between the conventional techniques and the new proposed methods based on ultrasonic monitoring are further discussed.
期刊介绍:
The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field.
The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects.
The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.