Determining rock crack stress thresholds using ultrasonic through-transmission measurements

IF 6.9 1区 工程技术 Q2 ENERGY & FUELS
Jiangwan He, Mehdi Serati, Martin Veidt, Arthur De Alwis
{"title":"Determining rock crack stress thresholds using ultrasonic through-transmission measurements","authors":"Jiangwan He, Mehdi Serati, Martin Veidt, Arthur De Alwis","doi":"10.1007/s40789-024-00669-x","DOIUrl":null,"url":null,"abstract":"<p>The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures. While various strain-based methods have been developed for the estimation of this critical design parameter, such methods are destructive and often requires subjective interpretations of the stress–strain curves, particularly in rocks with pre-existing microcracks or high porosity. This study explore the applicability of non-destructive ultrasonic through-transmission methods for determining rock damage levels by assessing the changes in transmitted signal characteristics during loading. The change in velocity, amplitude, dominant frequency, and root-mean-square voltage are investigated with four different rock types including marble, sandstone, granite, and basalt under various stress levels. Results suggest the rate of signal variations can be reliably used to estimate crack closure and crack initiation stress levels across the tested rocks before failure. Comparison of the results between the conventional techniques and the new proposed methods based on ultrasonic monitoring are further discussed.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-024-00669-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures. While various strain-based methods have been developed for the estimation of this critical design parameter, such methods are destructive and often requires subjective interpretations of the stress–strain curves, particularly in rocks with pre-existing microcracks or high porosity. This study explore the applicability of non-destructive ultrasonic through-transmission methods for determining rock damage levels by assessing the changes in transmitted signal characteristics during loading. The change in velocity, amplitude, dominant frequency, and root-mean-square voltage are investigated with four different rock types including marble, sandstone, granite, and basalt under various stress levels. Results suggest the rate of signal variations can be reliably used to estimate crack closure and crack initiation stress levels across the tested rocks before failure. Comparison of the results between the conventional techniques and the new proposed methods based on ultrasonic monitoring are further discussed.

Abstract Image

利用超声波透射测量确定岩石裂缝应力阈值
在地下深层结构设计中,裂缝起始应力阈值被广泛用作岩石剥落强度,以避免不必要的脆性破坏。虽然已开发出各种基于应变的方法来估算这一关键设计参数,但这些方法都是破坏性的,通常需要对应力-应变曲线进行主观解释,特别是在已存在微裂缝或高孔隙率的岩石中。本研究通过评估加载过程中透射信号特征的变化,探索非破坏性超声波透射法在确定岩石损伤程度方面的适用性。研究了在不同应力水平下四种不同岩石类型(包括大理石、砂岩、花岗岩和玄武岩)的速度、振幅、主频和均方根电压的变化。结果表明,信号变化率可用于可靠地估算测试岩石在破坏前的裂缝闭合和裂缝起始应力水平。此外,还进一步讨论了传统技术与基于超声波监测的新方法之间的结果比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.40
自引率
8.40%
发文量
678
审稿时长
12 weeks
期刊介绍: The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field. The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects. The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信