Galois theory and homology in quasi-abelian functor categories

Nadja Egner
{"title":"Galois theory and homology in quasi-abelian functor categories","authors":"Nadja Egner","doi":"arxiv-2403.12750","DOIUrl":null,"url":null,"abstract":"Given a finite category T, we consider the functor category [T,A], where A\ncan in particular be any quasi-abelian category. Examples of quasi-abelian\ncategories are given by any abelian category but also by non-exact additive\ncategories as the categories of torsion(-free) abelian groups, topological\nabelian groups, locally compact abelian groups, Banach spaces and Fr\\'echet\nspaces. In this situation, the categories of various internal categorical\nstructures in A, such as the categories of internal n-fold groupoids, are\nequivalent to functor categories [T,A] for a suitable category T. For a replete\nfull subcategory S of T, we define F to be the full subcategory of [T,A] whose\nobjects are given by the functors G with G(X)=0 for all objects X not in S. We\nprove that F is a torsion-free Birkhoff subcategory of [T,A]. This allows us to\nstudy (higher) central extensions from categorical Galois theory in [T,A] with\nrespect to F and generalized Hopf formulae for homology.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.12750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a finite category T, we consider the functor category [T,A], where A can in particular be any quasi-abelian category. Examples of quasi-abelian categories are given by any abelian category but also by non-exact additive categories as the categories of torsion(-free) abelian groups, topological abelian groups, locally compact abelian groups, Banach spaces and Fr\'echet spaces. In this situation, the categories of various internal categorical structures in A, such as the categories of internal n-fold groupoids, are equivalent to functor categories [T,A] for a suitable category T. For a replete full subcategory S of T, we define F to be the full subcategory of [T,A] whose objects are given by the functors G with G(X)=0 for all objects X not in S. We prove that F is a torsion-free Birkhoff subcategory of [T,A]. This allows us to study (higher) central extensions from categorical Galois theory in [T,A] with respect to F and generalized Hopf formulae for homology.
准阿贝尔函数范畴中的伽罗瓦理论和同源性
给定一个有限范畴 T,我们考虑函数范畴 [T,A],其中,Ac 可以是任何准阿贝尔范畴。准阿贝尔范畴的例子有任何无性范畴,也有非完全加法范畴,如无扭(-free)无性群、拓扑无性群、局部紧凑无性群、巴拿赫空间和 Fr\'echetspaces 的范畴。对于 T 的一个完整子类 S,我们定义 F 为 [T,A] 的完整子类,其对象由函数 G 给出,对于不在 S 中的所有对象 X,函数 G(X)=0 。这使我们能够研究[T,A]中相对于 F 的分类伽罗瓦理论的(高)中心扩展以及同调的广义霍普夫公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信