Marija S. Najdanović, Svetozar R. Rančić, Ljubica S. Velimirović
{"title":"Total Torsion and Spherical Curves Bending","authors":"Marija S. Najdanović, Svetozar R. Rančić, Ljubica S. Velimirović","doi":"10.1007/s00009-024-02595-3","DOIUrl":null,"url":null,"abstract":"<p>It is well known that the total torsion of a closed spherical curve is zero. Furthermore, if the total torsion of any closed curve on the surface is zero, then it is part of a plane or a sphere. In this paper, we examine the total torsion of a spherical curve during infinitesimal bending. We find the appropriate bending fields and show that the variation of the total torsion of a closed spherical curve is equal to zero. Some examples are considered both analytically and using our own software tool. For figures, we use colors to represent the value of torsion at different points of the curve, together with a colour-value scale.</p>","PeriodicalId":49829,"journal":{"name":"Mediterranean Journal of Mathematics","volume":"41 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediterranean Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02595-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that the total torsion of a closed spherical curve is zero. Furthermore, if the total torsion of any closed curve on the surface is zero, then it is part of a plane or a sphere. In this paper, we examine the total torsion of a spherical curve during infinitesimal bending. We find the appropriate bending fields and show that the variation of the total torsion of a closed spherical curve is equal to zero. Some examples are considered both analytically and using our own software tool. For figures, we use colors to represent the value of torsion at different points of the curve, together with a colour-value scale.
期刊介绍:
The Mediterranean Journal of Mathematics (MedJM) is a publication issued by the Department of Mathematics of the University of Bari. The new journal replaces the Conferenze del Seminario di Matematica dell’Università di Bari which has been in publication from 1954 until 2003.
The Mediterranean Journal of Mathematics aims to publish original and high-quality peer-reviewed papers containing significant results across all fields of mathematics. The submitted papers should be of medium length (not to exceed 20 printed pages), well-written and appealing to a broad mathematical audience.
In particular, the Mediterranean Journal of Mathematics intends to offer mathematicians from the Mediterranean countries a particular opportunity to circulate the results of their researches in a common journal. Through such a new cultural and scientific stimulus the journal aims to contribute to further integration amongst Mediterranean universities, though it is open to contribution from mathematicians across the world.