{"title":"Practical gradient and conjugate gradient methods on flag manifolds","authors":"Xiaojing Zhu, Chungen Shen","doi":"10.1007/s10589-024-00568-6","DOIUrl":null,"url":null,"abstract":"<p>Flag manifolds, sets of nested sequences of linear subspaces with fixed dimensions, are rising in numerical analysis and statistics. The current optimization algorithms on flag manifolds are based on the exponential map and parallel transport, which are expensive to compute. In this paper we propose practical optimization methods on flag manifolds without the exponential map and parallel transport. Observing that flag manifolds have a similar homogeneous structure with Grassmann and Stiefel manifolds, we generalize some typical retractions and vector transports to flag manifolds, including the Cayley-type retraction and vector transport, the QR-based and polar-based retractions, the projection-type vector transport and the projection of the differentiated polar-based retraction as a vector transport. Theoretical properties and efficient implementations of the proposed retractions and vector transports are discussed. Then we establish Riemannian gradient and Riemannian conjugate gradient algorithms based on these retractions and vector transports. Numerical results on the problem of nonlinear eigenflags demonstrate that our algorithms have a great advantage in efficiency over the existing ones.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00568-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flag manifolds, sets of nested sequences of linear subspaces with fixed dimensions, are rising in numerical analysis and statistics. The current optimization algorithms on flag manifolds are based on the exponential map and parallel transport, which are expensive to compute. In this paper we propose practical optimization methods on flag manifolds without the exponential map and parallel transport. Observing that flag manifolds have a similar homogeneous structure with Grassmann and Stiefel manifolds, we generalize some typical retractions and vector transports to flag manifolds, including the Cayley-type retraction and vector transport, the QR-based and polar-based retractions, the projection-type vector transport and the projection of the differentiated polar-based retraction as a vector transport. Theoretical properties and efficient implementations of the proposed retractions and vector transports are discussed. Then we establish Riemannian gradient and Riemannian conjugate gradient algorithms based on these retractions and vector transports. Numerical results on the problem of nonlinear eigenflags demonstrate that our algorithms have a great advantage in efficiency over the existing ones.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.