Analytical solutions to the 1D compressible isothermal Navier–Stokes equations with Maxwell’s law

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Jianwei Dong, Lijuan Bo
{"title":"Analytical solutions to the 1D compressible isothermal Navier–Stokes equations with Maxwell’s law","authors":"Jianwei Dong, Lijuan Bo","doi":"10.1142/s0129055x24500168","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present some analytical solutions to the one-dimensional compressible isothermal Navier–Stokes equations with Maxwell’s law in the real line. First, we construct two analytical solutions by using a self-similar ansatz, one blows up in finite time and the other exists globally-in-time. Second, we construct two global analytical solutions with different large initial data by using a non-self-similar ansatz.</p>","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":"33 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0129055x24500168","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present some analytical solutions to the one-dimensional compressible isothermal Navier–Stokes equations with Maxwell’s law in the real line. First, we construct two analytical solutions by using a self-similar ansatz, one blows up in finite time and the other exists globally-in-time. Second, we construct two global analytical solutions with different large initial data by using a non-self-similar ansatz.

含麦克斯韦定律的一维可压缩等温纳维-斯托克斯方程的解析解
本文提出了在实线上具有麦克斯韦定律的一维可压缩等温纳维-斯托克斯方程的一些解析解。首先,我们利用自相似解析法构建了两个解析解,一个在有限时间内炸毁,另一个在全局时间内存在。其次,我们通过使用非自相似拟合法构建了两个具有不同大初始数据的全局分析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信