{"title":"Quantizing graphs, one way or two?","authors":"Jon Harrison","doi":"10.1142/s0129055x24600018","DOIUrl":null,"url":null,"abstract":"<p>Quantum graphs were introduced to model free electrons in organic molecules using a self-adjoint Hamiltonian on a network of intervals. A second graph quantization describes wave propagation on a graph by specifying scattering matrices at the vertices. A question that is frequently raised is the extent to which these models are the same or complementary. In particular, are all energy-independent unitary vertex scattering matrices associated with a self-adjoint Hamiltonian? Here we review results related to this issue. In addition, we observe that a self-adjoint Dirac operator with four component spinors produces a secular equation for the graph spectrum that matches the secular equation associated with wave propagation on the graph when the Dirac operator describes particles with zero mass and the vertex conditions do not allow spin rotation at the vertices.</p>","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":"159 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0129055x24600018","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum graphs were introduced to model free electrons in organic molecules using a self-adjoint Hamiltonian on a network of intervals. A second graph quantization describes wave propagation on a graph by specifying scattering matrices at the vertices. A question that is frequently raised is the extent to which these models are the same or complementary. In particular, are all energy-independent unitary vertex scattering matrices associated with a self-adjoint Hamiltonian? Here we review results related to this issue. In addition, we observe that a self-adjoint Dirac operator with four component spinors produces a secular equation for the graph spectrum that matches the secular equation associated with wave propagation on the graph when the Dirac operator describes particles with zero mass and the vertex conditions do not allow spin rotation at the vertices.
期刊介绍:
Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.