Spectral asymptotics of elliptic operators on manifolds

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Ivan G. Avramidi
{"title":"Spectral asymptotics of elliptic operators on manifolds","authors":"Ivan G. Avramidi","doi":"10.1142/s0129055x24500077","DOIUrl":null,"url":null,"abstract":"<p>The study of spectral properties of natural geometric elliptic partial differential operators acting on smooth sections of vector bundles over Riemannian manifolds is a central theme in global analysis, differential geometry and mathematical physics. Instead of studying the spectrum of a differential operator <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi></math></span><span></span> directly one usually studies its spectral functions, that is, spectral traces of some functions of the operator, such as the spectral zeta function <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>ζ</mi><mo stretchy=\"false\">(</mo><mi>s</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mstyle><mtext mathvariant=\"normal\">Tr</mtext></mstyle><msup><mrow><mi>L</mi></mrow><mrow><mo stretchy=\"false\">−</mo><mi>s</mi></mrow></msup></math></span><span></span> and the heat trace <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Θ</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mstyle><mtext mathvariant=\"normal\">Tr exp</mtext></mstyle><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">−</mo><mi>t</mi><mi>L</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. The kernel <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>U</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo>;</mo><mi>x</mi><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>′</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> of the heat semigroup <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">exp</mtext></mstyle><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">−</mo><mi>t</mi><mi>L</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, called the heat kernel, plays a major role in quantum field theory and quantum gravity, index theorems, non-commutative geometry, integrable systems and financial mathematics. We review some recent progress in the study of spectral asymptotics. We study more general spectral functions, such as <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Tr</mtext></mstyle><mi>f</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mi>L</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, that we call quantum heat traces. Also, we define new invariants of differential operators that depend not only on the eigenvalues but also on the eigenfunctions, and, therefore, contain much more information about the geometry of the manifold. Furthermore, we study some new invariants, such as <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Tr exp</mtext></mstyle><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">−</mo><mi>t</mi><msub><mrow><mi>L</mi></mrow><mrow><mo stretchy=\"false\">+</mo></mrow></msub><mo stretchy=\"false\">)</mo><mstyle><mtext mathvariant=\"normal\">exp</mtext></mstyle><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">−</mo><mi>s</mi><msub><mrow><mi>L</mi></mrow><mrow><mo stretchy=\"false\">−</mo></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>, that contain relative spectral information of two differential operators. Finally, we show how the convolution of the semigroups of two different operators can be computed by using purely algebraic methods.</p>","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0129055x24500077","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The study of spectral properties of natural geometric elliptic partial differential operators acting on smooth sections of vector bundles over Riemannian manifolds is a central theme in global analysis, differential geometry and mathematical physics. Instead of studying the spectrum of a differential operator L directly one usually studies its spectral functions, that is, spectral traces of some functions of the operator, such as the spectral zeta function ζ(s)=TrLs and the heat trace Θ(t)=Tr exp(tL). The kernel U(t;x,x) of the heat semigroup exp(tL), called the heat kernel, plays a major role in quantum field theory and quantum gravity, index theorems, non-commutative geometry, integrable systems and financial mathematics. We review some recent progress in the study of spectral asymptotics. We study more general spectral functions, such as Trf(tL), that we call quantum heat traces. Also, we define new invariants of differential operators that depend not only on the eigenvalues but also on the eigenfunctions, and, therefore, contain much more information about the geometry of the manifold. Furthermore, we study some new invariants, such as Tr exp(tL+)exp(sL), that contain relative spectral information of two differential operators. Finally, we show how the convolution of the semigroups of two different operators can be computed by using purely algebraic methods.

流形上椭圆算子的谱渐近性
研究作用于黎曼流形上向量束光滑截面的自然几何椭圆偏微分算子的谱特性,是全局分析、微分几何和数学物理的一个核心主题。人们通常不直接研究微分算子 L 的谱,而是研究其谱函数,即算子的某些函数的谱迹,如谱 zeta 函数 ζ(s)=TrL-s 和热迹 Θ(t)=Tr exp(-tL)。热半群 exp(-tL)的核 U(t;x,x′)称为热核,在量子场论和量子引力、指数定理、非交换几何、可积分系统和金融数学中发挥着重要作用。我们回顾了谱渐近学研究的一些最新进展。我们研究了更一般的谱函数,如 Trf(tL),我们称之为量子热迹。此外,我们还定义了微分算子的新不变式,这些不变式不仅取决于特征值,还取决于特征函数,因此包含更多有关流形几何的信息。此外,我们还研究了一些包含两个微分算子相对谱信息的新不变式,如 Tr exp(-tL+)exp(-sL-) 。最后,我们展示了如何通过纯代数方法计算两个不同算子的半群卷积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信