Homotopical foundations of parametrized quantum spin systems

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Agnès Beaudry, Michael Hermele, Juan Moreno, Markus J. Pflaum, Marvin Qi, Daniel D. Spiegel
{"title":"Homotopical foundations of parametrized quantum spin systems","authors":"Agnès Beaudry, Michael Hermele, Juan Moreno, Markus J. Pflaum, Marvin Qi, Daniel D. Spiegel","doi":"10.1142/s0129055x24600031","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a homotopical framework for studying invertible gapped phases of matter from the point of view of infinite spin lattice systems, using the framework of algebraic quantum mechanics. We define the notion of <i>quantum state types</i>. These are certain lax-monoidal functors from the category of finite-dimensional Hilbert spaces to the category of topological spaces. The universal example takes a finite-dimensional Hilbert space <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℋ</mi></math></span><span></span> to the pure state space of the quasi-local algebra of the quantum spin system with Hilbert space <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℋ</mi></math></span><span></span> at each site of a specified lattice. The lax-monoidal structure encodes the tensor product of states, which corresponds to stacking for quantum systems. We then explain how to formally extract parametrized phases of matter from quantum state types, and how they naturally give rise to <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"script\">ℰ</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span><span></span>-spaces for an operad we call the “multiplicative” linear isometry operad. We define the notion of invertible quantum state types and explain how the passage to phases for these is related to group completion. We also explain how invertible quantum state types give rise to loop-spectra. Our motivation is to provide a framework for constructing Kitaev’s loop-spectrum of bosonic invertible gapped phases of matter. Finally, as a first step toward understanding the homotopy types of the loop-spectra associated to invertible quantum state types, we prove that the pure state space of any UHF algebra is simply connected.</p>","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":"55 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0129055x24600031","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a homotopical framework for studying invertible gapped phases of matter from the point of view of infinite spin lattice systems, using the framework of algebraic quantum mechanics. We define the notion of quantum state types. These are certain lax-monoidal functors from the category of finite-dimensional Hilbert spaces to the category of topological spaces. The universal example takes a finite-dimensional Hilbert space to the pure state space of the quasi-local algebra of the quantum spin system with Hilbert space at each site of a specified lattice. The lax-monoidal structure encodes the tensor product of states, which corresponds to stacking for quantum systems. We then explain how to formally extract parametrized phases of matter from quantum state types, and how they naturally give rise to -spaces for an operad we call the “multiplicative” linear isometry operad. We define the notion of invertible quantum state types and explain how the passage to phases for these is related to group completion. We also explain how invertible quantum state types give rise to loop-spectra. Our motivation is to provide a framework for constructing Kitaev’s loop-spectrum of bosonic invertible gapped phases of matter. Finally, as a first step toward understanding the homotopy types of the loop-spectra associated to invertible quantum state types, we prove that the pure state space of any UHF algebra is simply connected.

参数化量子自旋系统的同域基础
在本文中,我们从无限自旋晶格系统的角度,利用代数量子力学的框架,提出了研究物质可逆间隙相的同调框架。我们定义了量子态类型的概念。它们是从有限维希尔伯特空间范畴到拓扑空间范畴的某些涣散单调函数。通用范例将有限维希尔伯特空间ℋ转换为量子自旋系统准局部代数的纯态空间,其希尔伯特空间ℋ位于指定晶格的每个位置。单轴结构编码了状态的张量乘积,相当于量子系统的堆积。然后,我们解释了如何从量子态类型中正式提取参数化的物质相,以及它们如何自然地为我们称之为 "乘法 "线性等距操作数的操作数产生ℰ∞空间。我们定义了可逆量子态类型的概念,并解释了这些类型的相位传递与群完备的关系。我们还解释了可逆量子态类型如何产生环谱。我们的动机是为构建基塔耶夫的玻色可逆间隙物质相的环谱提供一个框架。最后,作为理解与可逆量子态类型相关的环谱同调类型的第一步,我们证明了任何超高频代数的纯态空间都是简单连接的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信