Junfei Wang;Jing Li;Zhen Gao;Zhu Han;Chao Qiu;Xiaofei Wang
{"title":"Game-Based Low Complexity and Near Optimal Task Offloading for Mobile Blockchain Systems","authors":"Junfei Wang;Jing Li;Zhen Gao;Zhu Han;Chao Qiu;Xiaofei Wang","doi":"10.1109/TCC.2024.3376394","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) finds applications across diverse fields but grapples with privacy and security concerns. Blockchain offers a remedy by instilling trust among IoT devices. The development of blockchain in IoT encounters hurdles due to its resource-intensive computation processing, notably in PoW-based systems. Cloud and edge computing can facilitate the application of blockchain in this environment, and the IoT users who want to mine in blockchain need to pay the computation resource rent to the Cloud Computing Service Provider (CCSP) for offloading the mining workload. In this scenario, these IoT miners can form groups to trade with CCSP to maximize their utility. In this paper, a mixed model of the Stackelberg game and coalition formation game is embraced to address the grouping and pricing issues between IoT miners and CCSP. In particular, the Stackelberg game is utilized to handle the pricing problem, and the coalition formation game is employed to tackle the best group partition problem. Moreover, a coalition formation algorithm is proposed to obtain a near-optimal solution with very low complexity. Simulation results show that our proposed algorithm can obtain a performance that is very near to the exhaustive search method, outperforms other existing schemes, and requires only a small computation overhead.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 2","pages":"539-549"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10470360/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Things (IoT) finds applications across diverse fields but grapples with privacy and security concerns. Blockchain offers a remedy by instilling trust among IoT devices. The development of blockchain in IoT encounters hurdles due to its resource-intensive computation processing, notably in PoW-based systems. Cloud and edge computing can facilitate the application of blockchain in this environment, and the IoT users who want to mine in blockchain need to pay the computation resource rent to the Cloud Computing Service Provider (CCSP) for offloading the mining workload. In this scenario, these IoT miners can form groups to trade with CCSP to maximize their utility. In this paper, a mixed model of the Stackelberg game and coalition formation game is embraced to address the grouping and pricing issues between IoT miners and CCSP. In particular, the Stackelberg game is utilized to handle the pricing problem, and the coalition formation game is employed to tackle the best group partition problem. Moreover, a coalition formation algorithm is proposed to obtain a near-optimal solution with very low complexity. Simulation results show that our proposed algorithm can obtain a performance that is very near to the exhaustive search method, outperforms other existing schemes, and requires only a small computation overhead.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.