Transfer Learning for T-Cell Response Prediction

Josua StadelmaierUniversity of Tübingen, Brandon MaloneNEC OncoImmunity, Ralf EggelingUniversity of Tübingen
{"title":"Transfer Learning for T-Cell Response Prediction","authors":"Josua StadelmaierUniversity of Tübingen, Brandon MaloneNEC OncoImmunity, Ralf EggelingUniversity of Tübingen","doi":"arxiv-2403.12117","DOIUrl":null,"url":null,"abstract":"We study the prediction of T-cell response for specific given peptides, which\ncould, among other applications, be a crucial step towards the development of\npersonalized cancer vaccines. It is a challenging task due to limited,\nheterogeneous training data featuring a multi-domain structure; such data\nentail the danger of shortcut learning, where models learn general\ncharacteristics of peptide sources, such as the source organism, rather than\nspecific peptide characteristics associated with T-cell response. Using a transformer model for T-cell response prediction, we show that the\ndanger of inflated predictive performance is not merely theoretical but occurs\nin practice. Consequently, we propose a domain-aware evaluation scheme. We then\nstudy different transfer learning techniques to deal with the multi-domain\nstructure and shortcut learning. We demonstrate a per-source fine tuning\napproach to be effective across a wide range of peptide sources and further\nshow that our final model outperforms existing state-of-the-art approaches for\npredicting T-cell responses for human peptides.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.12117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the prediction of T-cell response for specific given peptides, which could, among other applications, be a crucial step towards the development of personalized cancer vaccines. It is a challenging task due to limited, heterogeneous training data featuring a multi-domain structure; such data entail the danger of shortcut learning, where models learn general characteristics of peptide sources, such as the source organism, rather than specific peptide characteristics associated with T-cell response. Using a transformer model for T-cell response prediction, we show that the danger of inflated predictive performance is not merely theoretical but occurs in practice. Consequently, we propose a domain-aware evaluation scheme. We then study different transfer learning techniques to deal with the multi-domain structure and shortcut learning. We demonstrate a per-source fine tuning approach to be effective across a wide range of peptide sources and further show that our final model outperforms existing state-of-the-art approaches for predicting T-cell responses for human peptides.
用于 T 细胞反应预测的迁移学习
我们研究了针对特定多肽的 T 细胞反应预测,除其他应用外,这可能是开发个性化癌症疫苗的关键一步。由于具有多域结构的异构训练数据有限,这是一项具有挑战性的任务;此类数据存在捷径学习的危险,即模型学习的是肽源的一般特征,如源生物,而不是与 T 细胞反应相关的特定肽特征。通过使用 T 细胞反应预测的转换器模型,我们发现预测性能膨胀的危险不仅存在于理论上,而且在实践中也时有发生。因此,我们提出了一种领域感知评估方案。然后,我们研究了不同的迁移学习技术,以处理多领域结构和捷径学习。我们证明了按来源进行微调的方法在广泛的肽来源中是有效的,并进一步证明了我们的最终模型在预测人类肽的 T 细胞反应方面优于现有的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信