Sum of series and new relations for Mittag-Leffler functions

IF 2.5 2区 数学 Q1 MATHEMATICS
Sarah A. Deif, E. Capelas de Oliveira
{"title":"Sum of series and new relations for Mittag-Leffler functions","authors":"Sarah A. Deif, E. Capelas de Oliveira","doi":"10.1007/s13540-024-00266-4","DOIUrl":null,"url":null,"abstract":"<p>An integral equation is constructed relating the three-parameter Mittag-Leffler function with a perturbed one, from which a new property is derived. The latter helps in finding new sums of series of Mittag-Leffler functions. Also, a bound is obtained for the Mittag-Leffler function, allowing to perform a sensitivity analysis, being vital in the solution of fractional differential equations. The bound is also tested on a numerical example.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"40 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00266-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An integral equation is constructed relating the three-parameter Mittag-Leffler function with a perturbed one, from which a new property is derived. The latter helps in finding new sums of series of Mittag-Leffler functions. Also, a bound is obtained for the Mittag-Leffler function, allowing to perform a sensitivity analysis, being vital in the solution of fractional differential equations. The bound is also tested on a numerical example.

Abstract Image

Mittag-Leffler 函数的级数之和与新关系式
构建了一个三参数米塔格-勒弗勒函数与扰动函数之间的积分方程,并从中得出了一个新的性质。后者有助于找到新的米塔格-勒弗勒函数数列和。此外,还获得了 Mittag-Leffler 函数的约束,从而可以进行敏感性分析,这对分数微分方程的求解至关重要。该约束还在一个数值示例中进行了检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信