{"title":"Smaller kernels for two vertex deletion problems","authors":"Dekel Tsur","doi":"10.1016/j.ipl.2024.106493","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider two vertex deletion problems. In the <span>Block Vertex Deletion</span> problem, the input is a graph <em>G</em> and an integer <em>k</em>, and the goal is to decide whether there is a set of at most <em>k</em> vertices whose removal from <em>G</em> result in a block graph (a graph in which every biconnected component is a clique). In the <span>Pathwidth One Vertex Deletion</span> problem, the input is a graph <em>G</em> and an integer <em>k</em>, and the goal is to decide whether there is a set of at most <em>k</em> vertices whose removal from <em>G</em> result in a graph with pathwidth at most one. We give a kernel for <span>Block Vertex Deletion</span> with <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> vertices and a kernel for <span>Pathwidth One Vertex Deletion</span> with <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> vertices. Our results improve the previous <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></math></span>-vertex kernel for <span>Block Vertex Deletion</span> (Agrawal et al., 2016 <span>[1]</span>) and the <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span>-vertex kernel for <span>Pathwidth One Vertex Deletion</span> (Cygan et al., 2012 <span>[3]</span>).</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"186 ","pages":"Article 106493"},"PeriodicalIF":0.7000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019024000231","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we consider two vertex deletion problems. In the Block Vertex Deletion problem, the input is a graph G and an integer k, and the goal is to decide whether there is a set of at most k vertices whose removal from G result in a block graph (a graph in which every biconnected component is a clique). In the Pathwidth One Vertex Deletion problem, the input is a graph G and an integer k, and the goal is to decide whether there is a set of at most k vertices whose removal from G result in a graph with pathwidth at most one. We give a kernel for Block Vertex Deletion with vertices and a kernel for Pathwidth One Vertex Deletion with vertices. Our results improve the previous -vertex kernel for Block Vertex Deletion (Agrawal et al., 2016 [1]) and the -vertex kernel for Pathwidth One Vertex Deletion (Cygan et al., 2012 [3]).
在本文中,我们考虑了两个顶点删除问题。在 "块顶点删除 "问题中,输入是一个图 G 和一个整数 k,目标是判断是否有一组顶点(最多 k 个)从 G 中删除后会形成一个块图(图中每个双连接的部分都是一个小块)。在路径宽度为一的顶点删除问题中,输入是一个图 G 和一个整数 k,目标是判断是否存在一组至多 k 个顶点,将其从 G 中删除后会得到一个路径宽度至多为一的图。我们给出了 O(k3) 个顶点的块顶点删除内核和 O(k2) 个顶点的路径宽度为一的顶点删除内核。我们的结果改进了之前用于块顶点删除的 O(k4)- 顶点内核(Agrawal 等人,2016 [1])和用于路径宽度一个顶点删除的 O(k3)- 顶点内核(Cygan 等人,2012 [3])。
期刊介绍:
Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered.
Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.