Event-triggered H∞ PI state estimation for delayed switched neural networks

Yuzhong Wang , Changyun Wen , Xiaolei Li
{"title":"Event-triggered H∞ PI state estimation for delayed switched neural networks","authors":"Yuzhong Wang ,&nbsp;Changyun Wen ,&nbsp;Xiaolei Li","doi":"10.1016/j.jai.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>On state estimation problems of switched neural networks, most existing results with an event-triggered scheme (ETS) not only ignore the estimator information, but also just employ a fixed triggering threshold, and the estimation error cannot be guaranteed to converge to zero. In addition, the state estimator of non-switched neural networks with integral and exponentially convergent terms cannot be used to improve the estimation performance of switched neural networks due to the difficulties caused by the nonsmoothness of the considered Lyapunov function at the switching instants. In this paper, we aim at overcoming such difficulties and filling in the gaps, by proposing a novel adaptive ETS (AETS) to design an event-based <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> switched proportional–integral (PI) state estimator. A triggering-dependent exponential convergence term and an integral term are introduced into the switched PI state estimator. The relationship among the average dwell time, the AETS and the PI state estimator are established by the triggering-dependent exponential convergence term such that estimation error asymptotically converges to zero with <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> performance level. It is shown that the convergence rate of the resultant error system can be adaptively adjusted according to triggering signals. Finally, the validity of the proposed theoretical results is verified through two illustrative examples.</p></div>","PeriodicalId":100755,"journal":{"name":"Journal of Automation and Intelligence","volume":"3 1","pages":"Pages 26-33"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949855424000030/pdfft?md5=ca0dfc3b892317269c5114552323be59&pid=1-s2.0-S2949855424000030-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949855424000030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

On state estimation problems of switched neural networks, most existing results with an event-triggered scheme (ETS) not only ignore the estimator information, but also just employ a fixed triggering threshold, and the estimation error cannot be guaranteed to converge to zero. In addition, the state estimator of non-switched neural networks with integral and exponentially convergent terms cannot be used to improve the estimation performance of switched neural networks due to the difficulties caused by the nonsmoothness of the considered Lyapunov function at the switching instants. In this paper, we aim at overcoming such difficulties and filling in the gaps, by proposing a novel adaptive ETS (AETS) to design an event-based H switched proportional–integral (PI) state estimator. A triggering-dependent exponential convergence term and an integral term are introduced into the switched PI state estimator. The relationship among the average dwell time, the AETS and the PI state estimator are established by the triggering-dependent exponential convergence term such that estimation error asymptotically converges to zero with H performance level. It is shown that the convergence rate of the resultant error system can be adaptively adjusted according to triggering signals. Finally, the validity of the proposed theoretical results is verified through two illustrative examples.

延迟开关神经网络的事件触发 H∞ PI 状态估计
在开关神经网络的状态估计问题上,大多数采用事件触发方案(ETS)的现有结果不仅忽略了估计子信息,而且只是采用了一个固定的触发阈值,无法保证估计误差收敛为零。此外,由于所考虑的 Lyapunov 函数在切换时刻的非平滑性所带来的困难,带有积分项和指数收敛项的非切换神经网络状态估计器无法用于改善切换神经网络的估计性能。在本文中,我们提出了一种新颖的自适应 ETS(AETS)来设计基于事件的 H∞ 开关比例积分(PI)状态估计器,旨在克服这些困难并填补空白。开关式 PI 状态估计器中引入了依赖触发的指数收敛项和积分项。平均停留时间、AETS 和 PI 状态估计器之间的关系是通过与触发相关的指数收敛项建立起来的,从而使估计误差以 H∞ 的性能水平渐近收敛到零。研究表明,由此产生的误差系统的收敛速率可根据触发信号进行自适应调整。最后,通过两个示例验证了所提理论结果的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信