Miranda R Sun, Susana Gonzalez, Jason B Huang, Qiyuan Zhou, Arjun Cherukuri, Rohan Adavadkar, Hong-Li Yan, Shu-Han Sun, Guofei Zhou, J Usha Raj, Tianji Chen
{"title":"Biphasic regulation of miR-17∼92 transcription during hypoxia: roles of HIF1 and p53 hyperphosphorylation at ser15.","authors":"Miranda R Sun, Susana Gonzalez, Jason B Huang, Qiyuan Zhou, Arjun Cherukuri, Rohan Adavadkar, Hong-Li Yan, Shu-Han Sun, Guofei Zhou, J Usha Raj, Tianji Chen","doi":"10.1152/ajplung.00127.2023","DOIUrl":null,"url":null,"abstract":"<p><p>We have reported previously that during hypoxia exposure, the expression of mature miR-17∼92 was first upregulated and then downregulated in pulmonary artery smooth muscle cells (PASMC) and in mouse lungs in vitro and in vivo. Here, we investigated the mechanisms regulating this biphasic expression of miR-17∼92 in PASMC in hypoxia. We measured the level of primary miR-17∼92 in PASMC during hypoxia exposure and found that short-term hypoxia exposure (3% O<sub>2</sub>, 6 h) induced the level of primary miR-17∼92, whereas long-term hypoxia exposure (3% O<sub>2</sub>, 24 h) decreased its level, suggesting a biphasic regulation of miR-17∼92 expression at the transcriptional level. We found that short-term hypoxia-induced upregulation of miR-17∼92 was hypoxia-inducible factor 1α (HIF1α) and E2F1 dependent. Two HIF1α binding sites on miR-17∼92 promoter were identified. We also found that long-term hypoxia-induced suppression of miR-17∼92 expression could be restored by silencing of p53. Mutation of the p53-binding sites in the miR-17∼92 promoter increased miR-17∼92 promoter activity in both normoxia and hypoxia. Our findings suggest that the biphasic transcriptional regulation of miR-17∼92 during hypoxia is controlled by HIF1/E2F1 and p53 in PASMC: during short-term hypoxia exposure, stabilization of HIF1 and induction of E2F1 induce the transcription of miR-17∼92, whereas during long-term hypoxia exposure, hyperphosphorylation of p53 suppresses the expression of miR-17∼92.<b>NEW & NOTEWORTHY</b> We showed that the biphasic transcriptional regulation of miR-17∼92 during hypoxia is controlled by two distinct mechanisms: during short-term hypoxia exposure, induction of HIF1 and E2F1 upregulates miR-17∼92. Longer hypoxia exposure induces hyperphosphorylation of p53 at ser15, which leads to its binding to miR-17∼92 promoter and inhibition of its expression. Our findings provide novel insights into the spatiotemporal regulation of miR-17∼92 that may play a role in the development of human lung diseases including pulmonary hypertension (PH).</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L102-L113"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380943/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00127.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We have reported previously that during hypoxia exposure, the expression of mature miR-17∼92 was first upregulated and then downregulated in pulmonary artery smooth muscle cells (PASMC) and in mouse lungs in vitro and in vivo. Here, we investigated the mechanisms regulating this biphasic expression of miR-17∼92 in PASMC in hypoxia. We measured the level of primary miR-17∼92 in PASMC during hypoxia exposure and found that short-term hypoxia exposure (3% O2, 6 h) induced the level of primary miR-17∼92, whereas long-term hypoxia exposure (3% O2, 24 h) decreased its level, suggesting a biphasic regulation of miR-17∼92 expression at the transcriptional level. We found that short-term hypoxia-induced upregulation of miR-17∼92 was hypoxia-inducible factor 1α (HIF1α) and E2F1 dependent. Two HIF1α binding sites on miR-17∼92 promoter were identified. We also found that long-term hypoxia-induced suppression of miR-17∼92 expression could be restored by silencing of p53. Mutation of the p53-binding sites in the miR-17∼92 promoter increased miR-17∼92 promoter activity in both normoxia and hypoxia. Our findings suggest that the biphasic transcriptional regulation of miR-17∼92 during hypoxia is controlled by HIF1/E2F1 and p53 in PASMC: during short-term hypoxia exposure, stabilization of HIF1 and induction of E2F1 induce the transcription of miR-17∼92, whereas during long-term hypoxia exposure, hyperphosphorylation of p53 suppresses the expression of miR-17∼92.NEW & NOTEWORTHY We showed that the biphasic transcriptional regulation of miR-17∼92 during hypoxia is controlled by two distinct mechanisms: during short-term hypoxia exposure, induction of HIF1 and E2F1 upregulates miR-17∼92. Longer hypoxia exposure induces hyperphosphorylation of p53 at ser15, which leads to its binding to miR-17∼92 promoter and inhibition of its expression. Our findings provide novel insights into the spatiotemporal regulation of miR-17∼92 that may play a role in the development of human lung diseases including pulmonary hypertension (PH).
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.