Two results on character codegrees

Pub Date : 2024-01-10 DOI:10.1142/s0219498825501580
Yang Liu, Yong Yang
{"title":"Two results on character codegrees","authors":"Yang Liu, Yong Yang","doi":"10.1142/s0219498825501580","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> be a finite group and <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Irr</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span> be the set of irreducible characters of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span>. The codegree of an irreducible character <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>χ</mi></math></span><span></span> of the group <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> is defined as <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">cod</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>χ</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo>|</mo><mi>G</mi><mo>:</mo><mstyle><mtext mathvariant=\"normal\">ker</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>χ</mi><mo stretchy=\"false\">)</mo><mo>|</mo><mo stretchy=\"false\">/</mo><mi>χ</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. In this paper, we study two topics related to the character codegrees. The first result is related to the prime graph of character codegrees and we show that the codegree prime graphs of several classes of groups can be characterized only by graph theoretical terms. The second result is about the <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span>-parts of the codegrees and character degrees.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825501580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a finite group and Irr(G) be the set of irreducible characters of G. The codegree of an irreducible character χ of the group G is defined as cod(χ)=|G:ker(χ)|/χ(1). In this paper, we study two topics related to the character codegrees. The first result is related to the prime graph of character codegrees and we show that the codegree prime graphs of several classes of groups can be characterized only by graph theoretical terms. The second result is about the p-parts of the codegrees and character degrees.

分享
查看原文
关于字符编码度的两个结果
设 G 是有限群,Irr(G) 是 G 的不可还原字符集。群 G 的不可还原字符 χ 的度数定义为 cod(χ)=|G:ker(χ)|/χ(1)。在本文中,我们研究了与字符编码度相关的两个课题。第一个结果与字符 codegrees 的素数图有关,我们证明了几类群的 codegree 素数图只能用图论术语来表征。第二个结果是关于密码度和字符度的 p 部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信