{"title":"Two results on character codegrees","authors":"Yang Liu, Yong Yang","doi":"10.1142/s0219498825501580","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> be a finite group and <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Irr</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span> be the set of irreducible characters of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span>. The codegree of an irreducible character <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>χ</mi></math></span><span></span> of the group <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> is defined as <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">cod</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>χ</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo>|</mo><mi>G</mi><mo>:</mo><mstyle><mtext mathvariant=\"normal\">ker</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>χ</mi><mo stretchy=\"false\">)</mo><mo>|</mo><mo stretchy=\"false\">/</mo><mi>χ</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. In this paper, we study two topics related to the character codegrees. The first result is related to the prime graph of character codegrees and we show that the codegree prime graphs of several classes of groups can be characterized only by graph theoretical terms. The second result is about the <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span>-parts of the codegrees and character degrees.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825501580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a finite group and be the set of irreducible characters of . The codegree of an irreducible character of the group is defined as . In this paper, we study two topics related to the character codegrees. The first result is related to the prime graph of character codegrees and we show that the codegree prime graphs of several classes of groups can be characterized only by graph theoretical terms. The second result is about the -parts of the codegrees and character degrees.
设 G 是有限群,Irr(G) 是 G 的不可还原字符集。群 G 的不可还原字符 χ 的度数定义为 cod(χ)=|G:ker(χ)|/χ(1)。在本文中,我们研究了与字符编码度相关的两个课题。第一个结果与字符 codegrees 的素数图有关,我们证明了几类群的 codegree 素数图只能用图论术语来表征。第二个结果是关于密码度和字符度的 p 部分。