{"title":"Convergence to Sharp Traveling Waves of Solutions for Burgers-Fisher-KPP Equations with Degenerate Diffusion","authors":"Tianyuan Xu, Shanming Ji, Ming Mei, Jingxue Yin","doi":"10.1007/s00332-024-10021-x","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the convergence to sharp traveling waves of solutions with semi-compactly supported initial data for Burgers-Fisher-KPP equations with degenerate diffusion. We characterize the motion of the free boundary in the long-time asymptotic of the solution to Cauchy problem and the convergence to sharp traveling wave with almost exponential decay rates. Here a key difficulty lies in the intrinsic presence of nonlinear advection effect. After providing the analysis of the nonlinear advection effect on the asymptotic propagation speed of the free boundary, we construct sub- and super-solutions with semi-compact supports to estimate the motion of the free boundary. The new method overcomes the difficulties of the non-integrability of the generalized derivatives of sharp traveling waves at the free boundary.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10021-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with the convergence to sharp traveling waves of solutions with semi-compactly supported initial data for Burgers-Fisher-KPP equations with degenerate diffusion. We characterize the motion of the free boundary in the long-time asymptotic of the solution to Cauchy problem and the convergence to sharp traveling wave with almost exponential decay rates. Here a key difficulty lies in the intrinsic presence of nonlinear advection effect. After providing the analysis of the nonlinear advection effect on the asymptotic propagation speed of the free boundary, we construct sub- and super-solutions with semi-compact supports to estimate the motion of the free boundary. The new method overcomes the difficulties of the non-integrability of the generalized derivatives of sharp traveling waves at the free boundary.