CAPRI-Q: The CAPRI resource evaluating the quality of predicted structures of protein complexes

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"CAPRI-Q: The CAPRI resource evaluating the quality of predicted structures of protein complexes","authors":"","doi":"10.1016/j.jmb.2024.168540","DOIUrl":null,"url":null,"abstract":"<div><p>Protein interactions are essential for cellular processes. In recent years there has been significant progress in computational prediction of 3D structures of individual protein chains, with the best-performing algorithms reaching sub-Ångström accuracy. These techniques are now finding their way into the prediction of protein interactions, adding to the existing modeling approaches. The community-wide Critical Assessment of Predicted Interactions (CAPRI) has been a catalyst for the development of procedures for the structural modeling of protein assemblies by organizing blind prediction experiments. The predicted structures are assessed against unpublished experimentally determined structures using a set of metrics with proven robustness that have been established in the CAPRI community. In addition, several advanced benchmarking databases provide targets against which users can test docking and assembly modeling software. These include the Protein-Protein Docking Benchmark, the CAPRI Scoreset, and the <span>Dockground</span> database, all developed by members of the CAPRI community. Here we present CAPRI-Q, a stand-alone model quality assessment tool, which can be freely downloaded or used via a publicly available web server. This tool applies the CAPRI metrics to assess the quality of query structures against given target structures, along with other popular quality metrics such as DockQ, TM-score and <em>l</em>-DDT, and classifies the models according to the CAPRI model quality criteria. The tool can handle a variety of protein complex types including those involving peptides, nucleic acids, and oligosaccharides. The source code is freely available from <span><span>https://gitlab.in2p3.fr/cmsb-public/CAPRI-Q</span><svg><path></path></svg></span> and its web interface through the <span>Dockground</span> resource at <span><span>https://dockground.compbio.ku.edu/assessment/</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168540"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001359/pdfft?md5=4b997150389807ec96ba0668e678acea&pid=1-s2.0-S0022283624001359-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624001359","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein interactions are essential for cellular processes. In recent years there has been significant progress in computational prediction of 3D structures of individual protein chains, with the best-performing algorithms reaching sub-Ångström accuracy. These techniques are now finding their way into the prediction of protein interactions, adding to the existing modeling approaches. The community-wide Critical Assessment of Predicted Interactions (CAPRI) has been a catalyst for the development of procedures for the structural modeling of protein assemblies by organizing blind prediction experiments. The predicted structures are assessed against unpublished experimentally determined structures using a set of metrics with proven robustness that have been established in the CAPRI community. In addition, several advanced benchmarking databases provide targets against which users can test docking and assembly modeling software. These include the Protein-Protein Docking Benchmark, the CAPRI Scoreset, and the Dockground database, all developed by members of the CAPRI community. Here we present CAPRI-Q, a stand-alone model quality assessment tool, which can be freely downloaded or used via a publicly available web server. This tool applies the CAPRI metrics to assess the quality of query structures against given target structures, along with other popular quality metrics such as DockQ, TM-score and l-DDT, and classifies the models according to the CAPRI model quality criteria. The tool can handle a variety of protein complex types including those involving peptides, nucleic acids, and oligosaccharides. The source code is freely available from https://gitlab.in2p3.fr/cmsb-public/CAPRI-Q and its web interface through the Dockground resource at https://dockground.compbio.ku.edu/assessment/.

Abstract Image

CAPRI-Q:评估蛋白质复合体预测结构质量的 CAPRI 资源
蛋白质相互作用对细胞过程至关重要。近年来,单个蛋白质链三维结构的计算预测取得了重大进展,性能最好的算法达到了亚Ångström精度。现在,这些技术正被用于蛋白质相互作用的预测,为现有的建模方法锦上添花。通过组织盲预测实验,全社区范围的 "预测相互作用关键评估"(CAPRI)推动了蛋白质组装结构建模程序的发展。利用 CAPRI 社区已经建立的一套经过验证的稳健性指标,根据未公布的实验测定结构对预测结构进行评估。此外,几个先进的基准数据库还提供了目标,用户可以根据这些目标测试对接和装配建模软件。这些数据库包括蛋白质-蛋白质对接基准、CAPRI Scoreset 和 Dockground 数据库,均由 CAPRI 社区成员开发。在此,我们介绍一款独立的模型质量评估工具 CAPRI-Q,该工具可免费下载或通过公开的网络服务器使用。该工具应用 CAPRI 指标以及 DockQ、TM-score 和 l-DDT 等其他流行的质量指标,根据给定的目标结构评估查询结构的质量,并根据 CAPRI 模型质量标准对模型进行分类。该工具可以处理各种蛋白质复合物类型,包括涉及肽、核酸和寡糖的复合物。源代码可从 https://gitlab.in2p3.fr/cmsb-public/CAPRI-Q 免费获取,其网络接口可从 https://dockground.compbio.ku.edu/assessment/ 的 Dockground 资源获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信