Existence and Concentration of Solutions for a Class of Kirchhoff–Boussinesq Equation with Exponential Growth in $${\mathbb {R}}^4$$

Romulo D. Carlos, Gustavo S. A. Costa, Giovany M. Figuereido
{"title":"Existence and Concentration of Solutions for a Class of Kirchhoff–Boussinesq Equation with Exponential Growth in $${\\mathbb {R}}^4$$","authors":"Romulo D. Carlos, Gustavo S. A. Costa, Giovany M. Figuereido","doi":"10.1007/s00574-024-00388-6","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the existence and concentration of ground state solutions for the following class of elliptic Kirchhoff–Boussinesq type problems given by </p><span>$$\\begin{aligned} \\Delta ^{2} u \\pm \\Delta _{p} u +(1+\\lambda V(x))u= f(u)\\quad \\text {in}\\ {\\mathbb {R}}^{4}, \\end{aligned}$$</span><p>where <span>\\(2&lt; p&lt; 4,\\)</span> <span>\\(f\\in C( {\\mathbb {R}}, {\\mathbb {R}})\\)</span> is a nonlinearity which has subcritical or critical exponential growth at infinity and <span>\\(V\\in C({\\mathbb {R}}^4,{\\mathbb {R}})\\)</span> is a potential that vanishes on a bounded domain <span>\\(\\Omega \\subset {\\mathbb {R}}^4.\\)</span> Using variational methods, we show the existence of ground state solutions, which concentrates on a ground state solution of a Kirchhoff–Boussinesq type equation in <span>\\(\\Omega .\\)</span></p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"153 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-024-00388-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the existence and concentration of ground state solutions for the following class of elliptic Kirchhoff–Boussinesq type problems given by

$$\begin{aligned} \Delta ^{2} u \pm \Delta _{p} u +(1+\lambda V(x))u= f(u)\quad \text {in}\ {\mathbb {R}}^{4}, \end{aligned}$$

where \(2< p< 4,\) \(f\in C( {\mathbb {R}}, {\mathbb {R}})\) is a nonlinearity which has subcritical or critical exponential growth at infinity and \(V\in C({\mathbb {R}}^4,{\mathbb {R}})\) is a potential that vanishes on a bounded domain \(\Omega \subset {\mathbb {R}}^4.\) Using variational methods, we show the existence of ground state solutions, which concentrates on a ground state solution of a Kirchhoff–Boussinesq type equation in \(\Omega .\)

在 $${{mathbb {R}}^4$ 中指数增长的一类基尔霍夫-布森斯克方程的解的存在性和集中性
本文关注的是由$$\begin{aligned}给出的以下一类椭圆基尔霍夫-布辛斯基类型问题的基态解的存在性和集中性。\Delta ^{2} u \pm \Delta _{p} u +(1+\lambda V(x))u= f(u)\quad \text {in}\ {mathbb {R}}^{4}, \end{aligned}$$ 其中 \(2< p<;4,\) \(f\in C( {\mathbb {R}}, {\mathbb {R}})\)是一个在无穷远处具有亚临界或临界指数增长的非线性,并且 \(V\in C({\mathbb {R}}^4,{\mathbb {R}})\)是一个在有界域 \(\Omega \subset {\mathbb {R}}^4.) 上消失的势。\使用变分法,我们证明了基态解的存在性,这集中体现在基尔霍夫-布森斯克方程在 ( (Omega .\ )中的基态解。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信