{"title":"Thermodynamic Formalism for Continuous-Time Quantum Markov Semigroups: the Detailed Balance Condition, Entropy, Pressure and Equilibrium Quantum Processes","authors":"Jader E. Brasil, Josué Knorst, Artur O. Lopes","doi":"10.1142/s123016122350018x","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> denote the set of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> by <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> complex matrices. Consider continuous time quantum semigroups <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\".17em\"></mspace><mi mathvariant=\"cal\">ℒ</mi></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, where <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℒ</mi><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is the infinitesimal generator. If we assume that <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℒ</mi><mo stretchy=\"false\">(</mo><mi>I</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>0</mn></math></span><span></span>, we will call <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\".17em\"></mspace><mi mathvariant=\"cal\">ℒ</mi></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span> a quantum Markov semigroup. Given a stationary density matrix <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>ρ</mi><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi mathvariant=\"cal\">ℒ</mi></mrow></msub></math></span><span></span>, for the quantum Markov semigroup <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, we can define a continuous time stationary quantum Markov process, denoted by <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn><mo>.</mo></math></span><span></span> Given an <i>a priori</i> Laplacian operator <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℒ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, we will present a natural concept of entropy for a class of density matrices on <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Given a Hermitian operator <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>:</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> (which plays the role of a Hamiltonian), we will study a version of the variational principle of pressure for <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span>. A density matrix <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span> maximizing pressure will be called an equilibrium density matrix. From <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span> we will derive a new infinitesimal generator <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℒ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>. Finally, the continuous time quantum Markov process defined by the semigroup <span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\".17em\"></mspace><msub><mrow><mi mathvariant=\"cal\">ℒ</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, and an initial stationary density matrix, will be called the continuous time equilibrium quantum Markov process for the Hamiltonian <span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span>. It corresponds to the quantum thermodynamical equilibrium for the action of the Hamiltonian <span><math altimg=\"eq-00025.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span>.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"153 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s123016122350018x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote the set of by complex matrices. Consider continuous time quantum semigroups , , where is the infinitesimal generator. If we assume that , we will call , a quantum Markov semigroup. Given a stationary density matrix , for the quantum Markov semigroup , , we can define a continuous time stationary quantum Markov process, denoted by , Given an a priori Laplacian operator , we will present a natural concept of entropy for a class of density matrices on . Given a Hermitian operator (which plays the role of a Hamiltonian), we will study a version of the variational principle of pressure for . A density matrix maximizing pressure will be called an equilibrium density matrix. From we will derive a new infinitesimal generator . Finally, the continuous time quantum Markov process defined by the semigroup , , and an initial stationary density matrix, will be called the continuous time equilibrium quantum Markov process for the Hamiltonian . It corresponds to the quantum thermodynamical equilibrium for the action of the Hamiltonian .
期刊介绍:
The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.