{"title":"Finite Hilbert Systems for Weak Kleene Logics","authors":"","doi":"10.1007/s11225-023-10079-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Multiple-conclusion Hilbert-style systems allow us to finitely axiomatize every logic defined by a finite matrix. Having obtained such axiomatizations for Paraconsistent Weak Kleene and Bochvar–Kleene logics, we modify them by replacing the multiple-conclusion rules with carefully selected single-conclusion ones. In this way we manage to introduce the first <em>finite</em> Hilbert-style single-conclusion axiomatizations for these logics.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-023-10079-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple-conclusion Hilbert-style systems allow us to finitely axiomatize every logic defined by a finite matrix. Having obtained such axiomatizations for Paraconsistent Weak Kleene and Bochvar–Kleene logics, we modify them by replacing the multiple-conclusion rules with carefully selected single-conclusion ones. In this way we manage to introduce the first finite Hilbert-style single-conclusion axiomatizations for these logics.