Enhancements of discretization approaches for non-convex mixed-integer quadratically constrained quadratic programming: part II

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Benjamin Beach, Robert Burlacu, Andreas Bärmann, Lukas Hager, Robert Hildebrand
{"title":"Enhancements of discretization approaches for non-convex mixed-integer quadratically constrained quadratic programming: part II","authors":"Benjamin Beach, Robert Burlacu, Andreas Bärmann, Lukas Hager, Robert Hildebrand","doi":"10.1007/s10589-024-00554-y","DOIUrl":null,"url":null,"abstract":"<p>This is Part II of a study on mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We set the focus on MIP relaxation methods for non-convex continuous variable products where both variables are bounded and extend the well-known MIP relaxation <i>normalized multiparametric disaggregation technique</i>(NMDT), applying a sophisticated discretization to both variables. We refer to this approach as <i>doubly discretized normalized multiparametric disaggregation technique</i> (D-NMDT). In a comprehensive theoretical analysis, we underline the theoretical advantages of the enhanced method D-NMDT compared to NMDT. Furthermore, we perform a broad computational study to demonstrate its effectiveness in terms of producing tight dual bounds for MIQCQPs. Finally, we compare D-NMDT to the separable MIP relaxations from Part I and a state-of-the-art MIQCQP solver.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00554-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This is Part II of a study on mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We set the focus on MIP relaxation methods for non-convex continuous variable products where both variables are bounded and extend the well-known MIP relaxation normalized multiparametric disaggregation technique(NMDT), applying a sophisticated discretization to both variables. We refer to this approach as doubly discretized normalized multiparametric disaggregation technique (D-NMDT). In a comprehensive theoretical analysis, we underline the theoretical advantages of the enhanced method D-NMDT compared to NMDT. Furthermore, we perform a broad computational study to demonstrate its effectiveness in terms of producing tight dual bounds for MIQCQPs. Finally, we compare D-NMDT to the separable MIP relaxations from Part I and a state-of-the-art MIQCQP solver.

Abstract Image

非凸混合整数二次约束二次编程离散化方法的改进:第二部分
本文是研究用于求解非凸混合整数二次约束二次方程程序(MIQCQPs)的混合整数编程(MIP)松弛技术的第二部分。我们将重点放在两个变量都有界的非凸连续变量乘积的 MIP 松弛方法上,并扩展了著名的 MIP 松弛归一化多参数分解技术(NMDT),对两个变量都进行了复杂的离散化处理。我们将这种方法称为双重离散归一化多参数分解技术(D-NMDT)。通过全面的理论分析,我们强调了 D-NMDT 增强方法与 NMDT 相比的理论优势。此外,我们还进行了广泛的计算研究,以证明其在为 MIQCQPs 生成严格的对偶约束方面的有效性。最后,我们将 D-NMDT 与第一部分中的可分离 MIP 松弛法和最先进的 MIQCQP 求解器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信