{"title":"Spin-orbit coupling dynamics in a planar synchronous binary asteroid","authors":"Bo-Sheng Li, Pan Tan, Xi-Yun Hou","doi":"10.1007/s10509-024-04291-w","DOIUrl":null,"url":null,"abstract":"<div><p><b>Purpose:</b> The 1:1 spin-orbit resonance phenomenon is widely observed in binary asteroid systems. We aim to investigate the intrinsic dynamic mechanism behind the phenomenon under the coupled influence of the secondary’s rotation and orbital motion. <b>Methods:</b> The planar sphere–ellipsoid model is used to approximate the synchronous binary asteroid. The Lindstedt–Poincaré method is applied on the spin-orbit problem to find its explicit quasi-periodic solution. <b>Results:</b> Numerical simulations demonstrate that analytical solutions truncated at high orders are accurate enough to describe the orbital and rotational motions of the synchronous binary asteroid. With the help of the solution, we are able to identify in a more accurate way the stable region for the synchronous state by using the Lyapunov characteristic exponent. Moreover, the resonances that determine the boundary of the stability region are identified. <b>Conclusion:</b> The stable synchronous state requires a small eccentricity <span>\\(e\\)</span> of the mutual orbit but permits a large libration angle <span>\\(\\theta \\)</span> of the secondary. The anti-correlation of <span>\\(\\theta \\)</span> and <span>\\(e\\)</span> is confirmed. The stable region for a very elongated secondary is small, which helps explain the lack of such secondaries in observations (see Table 1 in Pravec et al. in Icarus 267:267–295, 2016). Findings of this study provide insights into the inherent dynamics that determine the rotational states of a synchronous binary asteroid.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04291-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The 1:1 spin-orbit resonance phenomenon is widely observed in binary asteroid systems. We aim to investigate the intrinsic dynamic mechanism behind the phenomenon under the coupled influence of the secondary’s rotation and orbital motion. Methods: The planar sphere–ellipsoid model is used to approximate the synchronous binary asteroid. The Lindstedt–Poincaré method is applied on the spin-orbit problem to find its explicit quasi-periodic solution. Results: Numerical simulations demonstrate that analytical solutions truncated at high orders are accurate enough to describe the orbital and rotational motions of the synchronous binary asteroid. With the help of the solution, we are able to identify in a more accurate way the stable region for the synchronous state by using the Lyapunov characteristic exponent. Moreover, the resonances that determine the boundary of the stability region are identified. Conclusion: The stable synchronous state requires a small eccentricity \(e\) of the mutual orbit but permits a large libration angle \(\theta \) of the secondary. The anti-correlation of \(\theta \) and \(e\) is confirmed. The stable region for a very elongated secondary is small, which helps explain the lack of such secondaries in observations (see Table 1 in Pravec et al. in Icarus 267:267–295, 2016). Findings of this study provide insights into the inherent dynamics that determine the rotational states of a synchronous binary asteroid.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.