Yuankai Yang, Ravi A. Patel, Nikolaos I. Prasianakis, Sergey V. Churakov, Guido Deissmann, Dirk Bosbach
{"title":"Elucidating the role of water films on solute diffusion in unsaturated porous media by improved pore-scale modeling","authors":"Yuankai Yang, Ravi A. Patel, Nikolaos I. Prasianakis, Sergey V. Churakov, Guido Deissmann, Dirk Bosbach","doi":"10.1002/vzj2.20321","DOIUrl":null,"url":null,"abstract":"Solute diffusion in partially saturated porous media is an important fundamental process in many natural and environmental systems. At low water saturation, the solute transport is governed by the diffusion in thin water films on the surfaces of solids. In this study, we established an improved pore-scale simulation framework successfully describing the solute diffusion in variably saturated porous media (e.g., soils), which considers the contribution of the diffusion within the thin water film on the surface of the solid matrix. The model takes into account the liquid–gas distribution in the underlying porous media by the Shan-Chen lattice Boltzmann Method (LBM) and simulates the solute diffusion in the bulk liquid phase and the water film. Based on the numerical results, an easy-to-use theoretical formula was also developed to predict the effective diffusivity in microporous materials at low saturation levels. The average relative error of its prediction with respect to the experimental data from the literature is about 30%, while that of the classical power law exceeds 70%. A simple phase diagram was defined, which allows us to identify the situations under which it is necessary to take the influence of surface water films on the effective diffusivity in unsaturated microporous media into account. The present study improves the pore-scale model to address solute diffusion in the water films at low water saturation and elucidates the contribution of thin water films on solute transport.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"155 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20321","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Solute diffusion in partially saturated porous media is an important fundamental process in many natural and environmental systems. At low water saturation, the solute transport is governed by the diffusion in thin water films on the surfaces of solids. In this study, we established an improved pore-scale simulation framework successfully describing the solute diffusion in variably saturated porous media (e.g., soils), which considers the contribution of the diffusion within the thin water film on the surface of the solid matrix. The model takes into account the liquid–gas distribution in the underlying porous media by the Shan-Chen lattice Boltzmann Method (LBM) and simulates the solute diffusion in the bulk liquid phase and the water film. Based on the numerical results, an easy-to-use theoretical formula was also developed to predict the effective diffusivity in microporous materials at low saturation levels. The average relative error of its prediction with respect to the experimental data from the literature is about 30%, while that of the classical power law exceeds 70%. A simple phase diagram was defined, which allows us to identify the situations under which it is necessary to take the influence of surface water films on the effective diffusivity in unsaturated microporous media into account. The present study improves the pore-scale model to address solute diffusion in the water films at low water saturation and elucidates the contribution of thin water films on solute transport.
期刊介绍:
Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.