{"title":"Real‐time assessment on health state for bearing based on parallel encoder‐decoder observer","authors":"Kunpeng Li, Jinhua Mi, Zhiguo Wang, Shengjie Yin, Libing Bai, Gen Qiu","doi":"10.1002/qre.3531","DOIUrl":null,"url":null,"abstract":"Bearings are foundational supporting components in diverse mechanical systems, essential for the reliable operation of these systems through real‐time monitoring and precise health state assessment. However, vibration signals from bearings in practical equipment often contain excessive noise and redundant information, complicating health state assessment. To address this challenge, this paper proposes a neural network‐based method named parallel encoder‐decoder (PED). This method features a parallel architecture that combines the long short‐term memory network and the temporal convolutional network for the encoder, along with a self‐attention module for the decoder. PED is adept at learning the temporal representations hidden in original signals and filtering vibration signals to remove noise and redundant information. Additionally, a multi‐objective loss function is developed to enhance the prediction results. A normalized Mahalanobis distance‐based metric is then employed to compare residual signals during bearing operation with those under normal conditions. The case study evaluates the PED observer's proficiency in accurately predicting vibration signals and assessing the performance of health indicator curves, demonstrating the proposed PED observer's superiority over conventional networks.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":"85 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3531","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bearings are foundational supporting components in diverse mechanical systems, essential for the reliable operation of these systems through real‐time monitoring and precise health state assessment. However, vibration signals from bearings in practical equipment often contain excessive noise and redundant information, complicating health state assessment. To address this challenge, this paper proposes a neural network‐based method named parallel encoder‐decoder (PED). This method features a parallel architecture that combines the long short‐term memory network and the temporal convolutional network for the encoder, along with a self‐attention module for the decoder. PED is adept at learning the temporal representations hidden in original signals and filtering vibration signals to remove noise and redundant information. Additionally, a multi‐objective loss function is developed to enhance the prediction results. A normalized Mahalanobis distance‐based metric is then employed to compare residual signals during bearing operation with those under normal conditions. The case study evaluates the PED observer's proficiency in accurately predicting vibration signals and assessing the performance of health indicator curves, demonstrating the proposed PED observer's superiority over conventional networks.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.