Neural network classification of beams carrying orbital angular momentum after propagating through controlled experimentally generated optical turbulence

William A. Jarrett, Svetlana Avramov-Zamurovic, Joel M. Esposito, K. Peter Judd, and Charles Nelson
{"title":"Neural network classification of beams carrying orbital angular momentum after propagating through controlled experimentally generated optical turbulence","authors":"William A. Jarrett, Svetlana Avramov-Zamurovic, Joel M. Esposito, K. Peter Judd, and Charles Nelson","doi":"10.1364/josaa.515096","DOIUrl":null,"url":null,"abstract":"We generate an alphabet of spatially multiplexed Laguerre–Gaussian beams carrying orbital angular momentum, which are demultiplexed at reception by a convolutional neural network (CNN). In this investigation, a methodology for optimizing alphabet design for best classification rates is proposed, and three 256-symbol alphabets are designed for performance evaluation in optical turbulence. The beams were propagated in three environments: through underwater optical turbulence generated by Rayleigh–Bénard (RB) convection (<span><span style=\"color: inherit;\"><span><span><span style=\"margin-right: 0.05em;\"><span>C</span></span><span style=\"height: 1.86em; vertical-align: -0.64em;\"><span><span><span style=\"margin-bottom: -0.25em;\"><span><span>2</span></span></span></span></span><span><span><span style=\"margin-top: -0.85em;\"><span><span>n</span></span></span></span></span></span></span><span style=\"margin-left: 0.333em; margin-right: 0.333em;\">≅</span><span>1</span><span><span style=\"margin-right: 0.05em;\"><span>0</span></span><span style=\"vertical-align: 0.5em;\"><span>−</span><span>11</span></span></span><span style=\"width: 0.278em; height: 0em;\"></span><span><span style=\"margin-right: 0.05em;\"><span>m</span></span><span style=\"vertical-align: 0.5em;\"><span>−</span><span>2</span><span><span>/</span></span><span>3</span></span></span></span></span><span tabindex=\"0\"></span><script type=\"math/tex\">{C}_{n}^{2}\\cong 1{0}^{-11}\\;{\\rm m}^{-2/3}</script></span>), through a simulated propagation path derived from the Nikishov spectrum (<span><span style=\"color: inherit;\"><span><span><span style=\"margin-right: 0.05em;\"><span>C</span></span><span style=\"height: 1.86em; vertical-align: -0.64em;\"><span><span><span style=\"margin-bottom: -0.25em;\"><span><span>2</span></span></span></span></span><span><span><span style=\"margin-top: -0.85em;\"><span><span>n</span></span></span></span></span></span></span><span style=\"margin-left: 0.333em; margin-right: 0.333em;\">≅</span><span>1</span><span><span style=\"margin-right: 0.05em;\"><span>0</span></span><span style=\"vertical-align: 0.5em;\"><span>−</span><span>13</span></span></span><span style=\"width: 0.278em; height: 0em;\"></span><span><span style=\"margin-right: 0.05em;\"><span>m</span></span><span style=\"vertical-align: 0.5em;\"><span>−</span><span>2</span><span><span>/</span></span><span>3</span></span></span></span></span><span tabindex=\"0\"></span><script type=\"math/tex\">{C}_{n}^{2}\\cong 1{0}^{-13}\\; {\\rm m}^{-2/3}</script></span>), and through optical turbulence from a thermal point source located in a water tank (<span><span style=\"color: inherit;\"><span><span><span style=\"margin-right: 0.05em;\"><span>C</span></span><span style=\"height: 1.86em; vertical-align: -0.64em;\"><span><span><span style=\"margin-bottom: -0.25em;\"><span><span>2</span></span></span></span></span><span><span><span style=\"margin-top: -0.85em;\"><span><span>n</span></span></span></span></span></span></span><span style=\"margin-left: 0.333em; margin-right: 0.333em;\">≅</span><span>1</span><span><span style=\"margin-right: 0.05em;\"><span>0</span></span><span style=\"vertical-align: 0.5em;\"><span>−</span><span>10</span></span></span><span style=\"width: 0.278em; height: 0em;\"></span><span><span style=\"margin-right: 0.05em;\"><span>m</span></span><span style=\"vertical-align: 0.5em;\"><span>−</span><span>2</span><span><span>/</span></span><span>3</span></span></span></span></span><span tabindex=\"0\"></span><script type=\"math/tex\">{C}_{n}^{2}\\cong 1{0}^{-10}\\;{\\rm m}^{-2/3}</script></span>). We report a classification accuracy of 93.1% for the RB environment, 99.99% in simulation, and 48.5% in the point source environment. The project demonstrates that the CNN can classify the complex alphabet symbols in a practical turbulent flow that exhibits strong optical turbulence, provided sufficient training data is available and testing data is representative of the specific environment. We find the most important factor in a high classification accuracy is a diversification in the intensity profiles of the alphabet symbols.","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josaa.515096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We generate an alphabet of spatially multiplexed Laguerre–Gaussian beams carrying orbital angular momentum, which are demultiplexed at reception by a convolutional neural network (CNN). In this investigation, a methodology for optimizing alphabet design for best classification rates is proposed, and three 256-symbol alphabets are designed for performance evaluation in optical turbulence. The beams were propagated in three environments: through underwater optical turbulence generated by Rayleigh–Bénard (RB) convection (C2n1011m2/3), through a simulated propagation path derived from the Nikishov spectrum (C2n1013m2/3), and through optical turbulence from a thermal point source located in a water tank (C2n1010m2/3). We report a classification accuracy of 93.1% for the RB environment, 99.99% in simulation, and 48.5% in the point source environment. The project demonstrates that the CNN can classify the complex alphabet symbols in a practical turbulent flow that exhibits strong optical turbulence, provided sufficient training data is available and testing data is representative of the specific environment. We find the most important factor in a high classification accuracy is a diversification in the intensity profiles of the alphabet symbols.
通过受控实验产生的光学湍流传播后携带轨道角动量的光束的神经网络分类
我们生成了一个携带轨道角动量的空间多路复用拉盖尔-高斯光束字母表,在接收时由卷积神经网络(CNN)进行解复用。在这项研究中,提出了一种优化字母表设计以获得最佳分类率的方法,并设计了三个 256 个符号的字母表,用于在光湍流中进行性能评估。光束在三种环境中传播:通过由 Rayleigh-Bénard (RB) 对流(C2n≅10-11m-2/3{C}_{n}^{2}\cong 1{0}^{-11}\;{\rm m}^{-2/3})产生的水下光湍流,通过由 Nikishov 频谱(C2n≅10-13m-2/3{C}_{n}^{2}\cong 1{0}^{-13};{/rm m}^{-2/3}),以及通过来自水箱中热点源的光湍流(C2n≅10-10m-2/3{C}_{n}^{2}\cong 1{0}^{-10}\; {\rm m}^{-2/3})。我们报告的 RB 环境分类准确率为 93.1%,模拟准确率为 99.99%,点源环境准确率为 48.5%。该项目证明,只要有足够的训练数据,且测试数据能代表特定环境,CNN 就能在实际的强光湍流中对复杂的字母符号进行分类。我们发现,分类准确率高的最重要因素是字母符号的强度分布多样化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信