{"title":"Vector invariants of permutation groups in characteristic zero","authors":"Fabian Reimers, Müfit Sezer","doi":"10.1142/s0129167x23501112","DOIUrl":null,"url":null,"abstract":"<p>We consider a finite permutation group acting naturally on a vector space <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>V</mi></math></span><span></span> over a field <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mo>𝕜</mo></math></span><span></span>. A well-known theorem of Göbel asserts that the corresponding ring of invariants <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo>𝕜</mo><msup><mrow><mo stretchy=\"false\">[</mo><mi>V</mi><mo stretchy=\"false\">]</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span><span></span> is generated by the invariants of degree at most <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0.0pt\"><mrow><mo>dim</mo><mi>V</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mfenced></math></span><span></span>. In this paper, we show that if the characteristic of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo>𝕜</mo></math></span><span></span> is zero, then the top degree of vector coinvariants <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo>𝕜</mo><msub><mrow><mo stretchy=\"false\">[</mo><msup><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msup><mo stretchy=\"false\">]</mo></mrow><mrow><mi>G</mi></mrow></msub></math></span><span></span> is also bounded above by <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0.0pt\"><mrow><mstyle><mtext mathvariant=\"normal\">dim</mtext></mstyle><mi>V</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mfenced></math></span><span></span>, which implies the degree bound <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0.0pt\"><mrow><mo>dim</mo><mi>V</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mfenced><mo stretchy=\"false\">+</mo><mn>1</mn></math></span><span></span> for the ring of vector invariants <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mo>𝕜</mo><msup><mrow><mo stretchy=\"false\">[</mo><msup><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msup><mo stretchy=\"false\">]</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span><span></span>. So, Göbel’s bound almost holds for vector invariants in characteristic zero as well.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x23501112","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a finite permutation group acting naturally on a vector space over a field . A well-known theorem of Göbel asserts that the corresponding ring of invariants is generated by the invariants of degree at most . In this paper, we show that if the characteristic of is zero, then the top degree of vector coinvariants is also bounded above by , which implies the degree bound for the ring of vector invariants . So, Göbel’s bound almost holds for vector invariants in characteristic zero as well.
期刊介绍:
The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.