{"title":"Advertisement Synthesis Network for Automatic Advertisement Image Synthesis","authors":"Qin Wu, Peizi Zhou","doi":"10.1155/2024/8030907","DOIUrl":null,"url":null,"abstract":"Image advertising is widely used by companies to advertise their products and increase awareness of their brands. With the constant development of image generation techniques, automatic compositing of advertisement images has also been widely studied. However, the existing algorithms cannot synthesise consistent-looking advertisement images for a given product. The key challenge is to stitch a given product into a scene that matches the style of the product while maintaining a consistent-looking. To solve this problem, this paper proposes a new two-stage automatic advertisement image generation model, called Advertisement Synthesis Network (ASNet), which explores a two-stage generation framework to synthesise consistent-looking product advertisement images. Specifically, ASNet first generates a preliminary target product scene using Pre-Synthesis and then extracts scene features using Pseudo-Target Object Encoder (PTOE) and true target features using Real Target Object Encoder (RTOE), respectively. Finally, we inject the acquired features into the pretrained diffusion model and reconstruct them in the preliminary generated target goods scene. Extensive experiments have shown that the method achieves better results in all three performance metrics related to the quality of the synthesised image compared to other methods. In addition, we have done a simple and preliminary study on the effect of synthetic advertisement images on real consumers’ purchase intention and brand perception. The results of the study show that the advertisement images synthesised by the model proposed in this paper have a positive impact on consumer purchase intention and brand perception.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":"23 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2024/8030907","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Image advertising is widely used by companies to advertise their products and increase awareness of their brands. With the constant development of image generation techniques, automatic compositing of advertisement images has also been widely studied. However, the existing algorithms cannot synthesise consistent-looking advertisement images for a given product. The key challenge is to stitch a given product into a scene that matches the style of the product while maintaining a consistent-looking. To solve this problem, this paper proposes a new two-stage automatic advertisement image generation model, called Advertisement Synthesis Network (ASNet), which explores a two-stage generation framework to synthesise consistent-looking product advertisement images. Specifically, ASNet first generates a preliminary target product scene using Pre-Synthesis and then extracts scene features using Pseudo-Target Object Encoder (PTOE) and true target features using Real Target Object Encoder (RTOE), respectively. Finally, we inject the acquired features into the pretrained diffusion model and reconstruct them in the preliminary generated target goods scene. Extensive experiments have shown that the method achieves better results in all three performance metrics related to the quality of the synthesised image compared to other methods. In addition, we have done a simple and preliminary study on the effect of synthetic advertisement images on real consumers’ purchase intention and brand perception. The results of the study show that the advertisement images synthesised by the model proposed in this paper have a positive impact on consumer purchase intention and brand perception.
期刊介绍:
International Journal of Antennas and Propagation publishes papers on the design, analysis, and applications of antennas, along with theoretical and practical studies relating the propagation of electromagnetic waves at all relevant frequencies, through space, air, and other media.
As well as original research, the International Journal of Antennas and Propagation also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.