Kawaguchi–Silverman conjecture on automorphisms of projective threefolds

IF 0.6 4区 数学 Q3 MATHEMATICS
Sichen Li
{"title":"Kawaguchi–Silverman conjecture on automorphisms of projective threefolds","authors":"Sichen Li","doi":"10.1142/s0129167x24500022","DOIUrl":null,"url":null,"abstract":"<p>Under the framework of dynamics on normal projective varieties by Kawamata, Nakayama and Zhang, and Hu and Li, we may reduce Kawaguchi–Silverman conjecture for automorphisms <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi></math></span><span></span> on normal projective threefolds <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> with either the canonical divisor <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span><span></span> is trivial or negative Kodaira dimension to the following two cases: (i) <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi></math></span><span></span> is a primitively automorphism of a weak Calabi–Yau threefold, (ii) <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> is a rationally connected threefold. And we prove Kawaguchi–Silverman conjecture is true for automorphisms of normal projective varieties <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> with the irregularity <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo><mo>≥</mo><mstyle><mtext mathvariant=\"normal\">dim</mtext></mstyle><mi>X</mi><mo stretchy=\"false\">−</mo><mn>1</mn></math></span><span></span>. Finally, we discuss Kawaguchi–Silverman conjecture on normal projective varieties with Picard number two.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":"80 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24500022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Under the framework of dynamics on normal projective varieties by Kawamata, Nakayama and Zhang, and Hu and Li, we may reduce Kawaguchi–Silverman conjecture for automorphisms f on normal projective threefolds X with either the canonical divisor KX is trivial or negative Kodaira dimension to the following two cases: (i) f is a primitively automorphism of a weak Calabi–Yau threefold, (ii) X is a rationally connected threefold. And we prove Kawaguchi–Silverman conjecture is true for automorphisms of normal projective varieties X with the irregularity q(X)dimX1. Finally, we discuss Kawaguchi–Silverman conjecture on normal projective varieties with Picard number two.

关于投影三折的川口-希尔弗曼无定形猜想
在 Kawamata、Nakayama 和 Zhang 以及 Hu 和 Li 等人关于正射影变体的动力学框架下,我们可以将正射影三维 X 上的自形体 f 的川口-希尔弗曼猜想(Kawaguchi-Silverman conjecture)简化为以下两种情况:(i)f 是弱 Calabi-Yau 三维的基元自形体;(ii)X 是有理连接的三维。我们证明川口-希尔弗曼猜想对于具有不规则性 q(X)≥dimX-1 的正射影变体 X 的自动形是真的。最后,我们讨论了皮卡数为 2 的正射影变上的川口-希尔弗曼猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信