Distance formulas in Bruhat–Tits building of SLd(ℚp)

IF 0.6 4区 数学 Q3 MATHEMATICS
Dominik Lachman
{"title":"Distance formulas in Bruhat–Tits building of SLd(ℚp)","authors":"Dominik Lachman","doi":"10.1142/s0129167x24500058","DOIUrl":null,"url":null,"abstract":"<p>We study the distance on the Bruhat–Tits building of the group <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">SL</mtext></mstyle></mrow><mrow><mi>d</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> (and its other combinatorial properties). Coding its vertices by certain matrix representatives, we introduce a way how to build formulas with combinatorial meanings. In Theorem 1, we give an explicit formula for the graph distance <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>δ</mi><mo stretchy=\"false\">(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of two vertices <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span> (without having to specify their common apartment). Our main result, Theorem 2, then extends the distance formula to a formula for the smallest total distance of a vertex from a given finite set of vertices. In the appendix we consider the case of <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">SL</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> and give a formula for the number of edges shared by two given apartments.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24500058","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the distance on the Bruhat–Tits building of the group SLd(p) (and its other combinatorial properties). Coding its vertices by certain matrix representatives, we introduce a way how to build formulas with combinatorial meanings. In Theorem 1, we give an explicit formula for the graph distance δ(α,β) of two vertices α and β (without having to specify their common apartment). Our main result, Theorem 2, then extends the distance formula to a formula for the smallest total distance of a vertex from a given finite set of vertices. In the appendix we consider the case of SL2(p) and give a formula for the number of edges shared by two given apartments.

SLd(ℚp)的布鲁哈特-提茨建筑中的距离公式
我们研究了 SLd(ℚp)群的布鲁哈特-提茨(Bruhat-Tits)构造上的距离(及其它组合性质)。我们用某些矩阵代表对其顶点进行编码,从而引入了一种构建具有组合意义的公式的方法。在定理 1 中,我们给出了两个顶点 α 和 β 的图距离 δ(α,β)的明确公式(无需指定它们的公共空间)。我们的主要结果定理 2 将距离公式扩展为一个顶点到给定有限顶点集合的最小总距离公式。在附录中,我们考虑了 SL2(ℚp) 的情况,并给出了两个给定单元共享的边的数量公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信