Prosper Dovonon, Yves F. Atchadé, Firmin Doko Tchatoka
{"title":"Efficiency bounds for moment condition models with mixed identification strength","authors":"Prosper Dovonon, Yves F. Atchadé, Firmin Doko Tchatoka","doi":"10.1016/j.jeconom.2024.105723","DOIUrl":null,"url":null,"abstract":"Moment condition models with mixed identification strength are models that are point identified but with estimating moment functions that are allowed to drift to 0 uniformly over the parameter space. Even though identification fails in the limit, depending on how slow the moment functions vanish, consistent estimation is possible. Existing estimators such as the generalized method of moment (GMM) estimator exhibit a pattern of nonstandard or even heterogeneous rate of convergence that materializes by some parameter directions being estimated at a slower rate than others. This paper derives asymptotic semiparametric efficiency bounds for regular estimators of parameters of these models. We show that GMM estimators are regular and that the so-called two-step GMM estimator – using the inverse of estimating function’s variance as weighting matrix – is semiparametrically efficient as it reaches the minimum variance attainable by regular estimators. This estimator is also asymptotically minimax efficient with respect to a large family of loss functions. Monte Carlo simulations are provided that confirm these results.","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"59 1","pages":""},"PeriodicalIF":9.9000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1016/j.jeconom.2024.105723","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Moment condition models with mixed identification strength are models that are point identified but with estimating moment functions that are allowed to drift to 0 uniformly over the parameter space. Even though identification fails in the limit, depending on how slow the moment functions vanish, consistent estimation is possible. Existing estimators such as the generalized method of moment (GMM) estimator exhibit a pattern of nonstandard or even heterogeneous rate of convergence that materializes by some parameter directions being estimated at a slower rate than others. This paper derives asymptotic semiparametric efficiency bounds for regular estimators of parameters of these models. We show that GMM estimators are regular and that the so-called two-step GMM estimator – using the inverse of estimating function’s variance as weighting matrix – is semiparametrically efficient as it reaches the minimum variance attainable by regular estimators. This estimator is also asymptotically minimax efficient with respect to a large family of loss functions. Monte Carlo simulations are provided that confirm these results.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.