{"title":"RESEARCH ON THE K-DIMENSION OF THE SUM OF TWO CONTINUOUS FUNCTIONS AND ITS APPLICATION","authors":"Y. X. CAO, N. LIU, Y. S. LIANG","doi":"10.1142/s0218348x24500300","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we have done some research studies on the fractal dimension of the sum of two continuous functions with different <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>-dimensions and approximation of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>-dimensional fractal functions. We first investigate the <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>-dimension of the linear combination of fractal function whose <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>-dimension is <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span> and the function satisfying Lipschitz condition is still <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>-dimensional. Then, based on the research of fractal term and the Weierstrass approximation theorem, an approximation of the <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>-dimensional continuous function is given, which is composed of finite triangular series and partial Weierstrass function. In addition, some preliminary results on the approximation of one-dimensional and two-dimensional fractal continuous functions have been given.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"149 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we have done some research studies on the fractal dimension of the sum of two continuous functions with different -dimensions and approximation of -dimensional fractal functions. We first investigate the -dimension of the linear combination of fractal function whose -dimension is and the function satisfying Lipschitz condition is still -dimensional. Then, based on the research of fractal term and the Weierstrass approximation theorem, an approximation of the -dimensional continuous function is given, which is composed of finite triangular series and partial Weierstrass function. In addition, some preliminary results on the approximation of one-dimensional and two-dimensional fractal continuous functions have been given.
本文对具有不同 K 维的两个连续函数之和的分形维数以及 s 维分形函数的近似进行了一些研究。我们首先研究了 K 维数为 s 且满足 Lipschitz 条件的函数仍为 s 维的分形函数线性组合的 K 维数。然后,基于分形项和魏尔斯特拉斯近似定理的研究,给出了由有限三角形级数和部分魏尔斯特拉斯函数组成的 s 维连续函数的近似值。此外,还给出了一维和二维分形连续函数近似的一些初步结果。