RESEARCH ON THE K-DIMENSION OF THE SUM OF TWO CONTINUOUS FUNCTIONS AND ITS APPLICATION

Fractals Pub Date : 2024-01-27 DOI:10.1142/s0218348x24500300
Y. X. CAO, N. LIU, Y. S. LIANG
{"title":"RESEARCH ON THE K-DIMENSION OF THE SUM OF TWO CONTINUOUS FUNCTIONS AND ITS APPLICATION","authors":"Y. X. CAO, N. LIU, Y. S. LIANG","doi":"10.1142/s0218348x24500300","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we have done some research studies on the fractal dimension of the sum of two continuous functions with different <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>-dimensions and approximation of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>-dimensional fractal functions. We first investigate the <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>-dimension of the linear combination of fractal function whose <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>-dimension is <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span> and the function satisfying Lipschitz condition is still <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>-dimensional. Then, based on the research of fractal term and the Weierstrass approximation theorem, an approximation of the <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>-dimensional continuous function is given, which is composed of finite triangular series and partial Weierstrass function. In addition, some preliminary results on the approximation of one-dimensional and two-dimensional fractal continuous functions have been given.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"149 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we have done some research studies on the fractal dimension of the sum of two continuous functions with different K-dimensions and approximation of s-dimensional fractal functions. We first investigate the K-dimension of the linear combination of fractal function whose K-dimension is s and the function satisfying Lipschitz condition is still s-dimensional. Then, based on the research of fractal term and the Weierstrass approximation theorem, an approximation of the s-dimensional continuous function is given, which is composed of finite triangular series and partial Weierstrass function. In addition, some preliminary results on the approximation of one-dimensional and two-dimensional fractal continuous functions have been given.

关于两个连续函数之和的 k 维数及其应用的研究
本文对具有不同 K 维的两个连续函数之和的分形维数以及 s 维分形函数的近似进行了一些研究。我们首先研究了 K 维数为 s 且满足 Lipschitz 条件的函数仍为 s 维的分形函数线性组合的 K 维数。然后,基于分形项和魏尔斯特拉斯近似定理的研究,给出了由有限三角形级数和部分魏尔斯特拉斯函数组成的 s 维连续函数的近似值。此外,还给出了一维和二维分形连续函数近似的一些初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信