FATMA ABDELHEDI, RIM JALLOULI KHLIF, AHMED SAID NOURI, NABIL DERBEL
{"title":"ON THE ASYMPTOTIC STABILITY OF A NEW FRACTIONAL-ORDER SLIDING MODE CONTROL WITH APPLICATION TO ROBOTIC SYSTEMS","authors":"FATMA ABDELHEDI, RIM JALLOULI KHLIF, AHMED SAID NOURI, NABIL DERBEL","doi":"10.1142/s0218348x24500312","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an advanced control strategy based on Fractional-Order Sliding Mode Control (FO-SMC), which introduces a robust solution to significantly improve the reliability of robotic manipulator systems and increase its control performance. The proposed FO-SMC strategy includes a two-key term-based Fractional Sliding Function (FSF) that presents the main contribution of this work. Additionally, a fractional-order-based Lyapunov stability analysis is developed for a class of nonlinear systems to guarantee the asymptotic stability of the closed loop system. Four FSF-based versions of the designed FO-SMC are studied and discussed. Various scenarios of the proposed control strategy are tested on a 3-degree-of-freedom SCARA robotic arm and compared to recent FO-SMC works, demonstrating the effectiveness of the new proposed control strategy to (i) ensure the asymptotic stability, (ii) achieve a smooth start-up, (iii) cancel the static error, giving a good tracking trajectory, and (iv) reduce the control torques, yielding a consumed energy minimization.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an advanced control strategy based on Fractional-Order Sliding Mode Control (FO-SMC), which introduces a robust solution to significantly improve the reliability of robotic manipulator systems and increase its control performance. The proposed FO-SMC strategy includes a two-key term-based Fractional Sliding Function (FSF) that presents the main contribution of this work. Additionally, a fractional-order-based Lyapunov stability analysis is developed for a class of nonlinear systems to guarantee the asymptotic stability of the closed loop system. Four FSF-based versions of the designed FO-SMC are studied and discussed. Various scenarios of the proposed control strategy are tested on a 3-degree-of-freedom SCARA robotic arm and compared to recent FO-SMC works, demonstrating the effectiveness of the new proposed control strategy to (i) ensure the asymptotic stability, (ii) achieve a smooth start-up, (iii) cancel the static error, giving a good tracking trajectory, and (iv) reduce the control torques, yielding a consumed energy minimization.