Soumitra Pal, Sarbari Karmakar, Saheb Pal, Nikhil Pal, A. K. Misra, Joydev Chattopadhyay
{"title":"Impact of Fear and Group Defense on the Dynamics of a Predator–Prey System","authors":"Soumitra Pal, Sarbari Karmakar, Saheb Pal, Nikhil Pal, A. K. Misra, Joydev Chattopadhyay","doi":"10.1142/s0218127424500196","DOIUrl":null,"url":null,"abstract":"<p>To reduce the chance of predation, many prey species adopt group defense mechanisms. While it is commonly believed that such defense mechanisms lead to positive feedback on prey density, a closer observation reveals that it may impact the growth rate of species. This is because individuals invest more time and effort in defense rather than reproductive activities. In this study, we delve into a predator–prey system where predator-induced fear influences the birth rate of prey, and the prey species exhibit group defense mechanism. We adopt a nonmonotonic functional response to govern the predator–prey interaction, which effectively captures the group defense mechanism. We present a detailed mathematical analysis, encompassing the determination of feasible equilibria and their stability conditions. Through the analytical approach, we demonstrate the occurrence of Hopf and Bogdanov–Takens (BT) bifurcations. We observe two distinct types of bistabilities in the system: one between interior and predator-free equilibria, and another between limit cycle and predator-free equilibrium. Our findings reveal that the parameters associated with group defense and predator-induced fear play significant roles in the survival and extinction of populations.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"23 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500196","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
To reduce the chance of predation, many prey species adopt group defense mechanisms. While it is commonly believed that such defense mechanisms lead to positive feedback on prey density, a closer observation reveals that it may impact the growth rate of species. This is because individuals invest more time and effort in defense rather than reproductive activities. In this study, we delve into a predator–prey system where predator-induced fear influences the birth rate of prey, and the prey species exhibit group defense mechanism. We adopt a nonmonotonic functional response to govern the predator–prey interaction, which effectively captures the group defense mechanism. We present a detailed mathematical analysis, encompassing the determination of feasible equilibria and their stability conditions. Through the analytical approach, we demonstrate the occurrence of Hopf and Bogdanov–Takens (BT) bifurcations. We observe two distinct types of bistabilities in the system: one between interior and predator-free equilibria, and another between limit cycle and predator-free equilibrium. Our findings reveal that the parameters associated with group defense and predator-induced fear play significant roles in the survival and extinction of populations.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.