{"title":"Hausdorff Measure and Uniform Dimension for Space-Time Anisotropic Gaussian Random Fields","authors":"Weijie Yuan, Zhenlong Chen","doi":"10.1007/s10959-024-01323-7","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(X=\\{ X(t), t\\in \\mathbb {R}^{N}\\} \\)</span> be a centered space-time anisotropic Gaussian random field in <span>\\(\\mathbb {R}^d\\)</span> with stationary increments, where the components <span>\\(X_{i}(i=1,\\ldots ,d)\\)</span> are independent but distributed differently. Under certain conditions, we not only give the Hausdorff dimension of the graph sets of <i>X</i> in the asymmetric metric in the recurrent case, but also determine the exact Hausdorff measure functions of the graph sets of <i>X</i> in the transient and recurrent cases, respectively. Moreover, we establish a uniform Hausdorff dimension result for the image sets of <i>X</i>. Our results extend the corresponding results on fractional Brownian motion and space or time anisotropic Gaussian random fields.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01323-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(X=\{ X(t), t\in \mathbb {R}^{N}\} \) be a centered space-time anisotropic Gaussian random field in \(\mathbb {R}^d\) with stationary increments, where the components \(X_{i}(i=1,\ldots ,d)\) are independent but distributed differently. Under certain conditions, we not only give the Hausdorff dimension of the graph sets of X in the asymmetric metric in the recurrent case, but also determine the exact Hausdorff measure functions of the graph sets of X in the transient and recurrent cases, respectively. Moreover, we establish a uniform Hausdorff dimension result for the image sets of X. Our results extend the corresponding results on fractional Brownian motion and space or time anisotropic Gaussian random fields.