Hausdorff Measure and Uniform Dimension for Space-Time Anisotropic Gaussian Random Fields

Pub Date : 2024-03-15 DOI:10.1007/s10959-024-01323-7
Weijie Yuan, Zhenlong Chen
{"title":"Hausdorff Measure and Uniform Dimension for Space-Time Anisotropic Gaussian Random Fields","authors":"Weijie Yuan, Zhenlong Chen","doi":"10.1007/s10959-024-01323-7","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(X=\\{ X(t), t\\in \\mathbb {R}^{N}\\} \\)</span> be a centered space-time anisotropic Gaussian random field in <span>\\(\\mathbb {R}^d\\)</span> with stationary increments, where the components <span>\\(X_{i}(i=1,\\ldots ,d)\\)</span> are independent but distributed differently. Under certain conditions, we not only give the Hausdorff dimension of the graph sets of <i>X</i> in the asymmetric metric in the recurrent case, but also determine the exact Hausdorff measure functions of the graph sets of <i>X</i> in the transient and recurrent cases, respectively. Moreover, we establish a uniform Hausdorff dimension result for the image sets of <i>X</i>. Our results extend the corresponding results on fractional Brownian motion and space or time anisotropic Gaussian random fields.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01323-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(X=\{ X(t), t\in \mathbb {R}^{N}\} \) be a centered space-time anisotropic Gaussian random field in \(\mathbb {R}^d\) with stationary increments, where the components \(X_{i}(i=1,\ldots ,d)\) are independent but distributed differently. Under certain conditions, we not only give the Hausdorff dimension of the graph sets of X in the asymmetric metric in the recurrent case, but also determine the exact Hausdorff measure functions of the graph sets of X in the transient and recurrent cases, respectively. Moreover, we establish a uniform Hausdorff dimension result for the image sets of X. Our results extend the corresponding results on fractional Brownian motion and space or time anisotropic Gaussian random fields.

分享
查看原文
时空各向异性高斯随机场的豪斯多夫量和均匀维度
让(X={ X(t), t\in \mathbb {R}^{N}\}\)是在\(\mathbb {R}^{D\) 中具有静态增量的居中时空各向异性高斯随机场,其中各分量\(X_{i}(i=1,\ldots ,d)\)是独立的,但分布不同。在一定条件下,我们不仅给出了非对称度量下 X 的图集在经常性情况下的 Hausdorff 维度,还分别确定了 X 的图集在瞬态和经常性情况下的精确 Hausdorff 度量函数。我们的结果扩展了分数布朗运动和空间或时间各向异性高斯随机场的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信