Hedging with physical or cash settlement under transient multiplicative price impact

IF 1.1 2区 经济学 Q3 BUSINESS, FINANCE
Dirk Becherer, Todor Bilarev
{"title":"Hedging with physical or cash settlement under transient multiplicative price impact","authors":"Dirk Becherer, Todor Bilarev","doi":"10.1007/s00780-024-00531-7","DOIUrl":null,"url":null,"abstract":"<p>We solve the superhedging problem for European options in an illiquid extension of the Black–Scholes model, in which transactions have transient price impact and the costs and strategies for hedging are affected by physical or cash settlement requirements at maturity. Our analysis is based on a convenient choice of reduced effective coordinates of magnitudes at liquidation for geometric dynamic programming. The price impact is transient over time and multiplicative, ensuring nonnegativity of underlying asset prices while maintaining an arbitrage-free model. The basic (log-)linear example is a Black–Scholes model with a relative price impact proportional to the volume of shares traded, where the transience for impact on log-prices is modelled like in Obizhaeva and Wang (J. Financ. Mark. 16:1–32, 2013) for nominal prices. More generally, we allow nonlinear price impact and resilience functions. The viscosity solutions describing the minimal superhedging price are governed by the transient character of the price impact and by the physical or cash settlement specifications. The pricing equations under illiquidity extend no-arbitrage pricing à la Black–Scholes for complete markets in a non-paradoxical way (cf. Çetin et al. (Finance Stoch. 14:317–341, 2010)) even without additional frictions, and can recover it in base cases.</p>","PeriodicalId":50447,"journal":{"name":"Finance and Stochastics","volume":"2 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance and Stochastics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s00780-024-00531-7","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We solve the superhedging problem for European options in an illiquid extension of the Black–Scholes model, in which transactions have transient price impact and the costs and strategies for hedging are affected by physical or cash settlement requirements at maturity. Our analysis is based on a convenient choice of reduced effective coordinates of magnitudes at liquidation for geometric dynamic programming. The price impact is transient over time and multiplicative, ensuring nonnegativity of underlying asset prices while maintaining an arbitrage-free model. The basic (log-)linear example is a Black–Scholes model with a relative price impact proportional to the volume of shares traded, where the transience for impact on log-prices is modelled like in Obizhaeva and Wang (J. Financ. Mark. 16:1–32, 2013) for nominal prices. More generally, we allow nonlinear price impact and resilience functions. The viscosity solutions describing the minimal superhedging price are governed by the transient character of the price impact and by the physical or cash settlement specifications. The pricing equations under illiquidity extend no-arbitrage pricing à la Black–Scholes for complete markets in a non-paradoxical way (cf. Çetin et al. (Finance Stoch. 14:317–341, 2010)) even without additional frictions, and can recover it in base cases.

Abstract Image

瞬时价格乘数影响下的实物或现金结算套期保值
我们在布莱克-斯科尔斯模型的非流动性扩展模型中解决了欧式期权的超级套期保值问题,在该模型中,交易具有瞬时价格影响,套期保值的成本和策略受到到期时实物或现金结算要求的影响。我们的分析基于一个方便的选择,即在几何动态编程中减少清算时的有效幅度坐标。价格影响是随时间变化的,并且是乘性的,从而确保了相关资产价格的非负性,同时保持了无套利模型。基本(对数)线性示例是 Black-Scholes 模型,其相对价格影响与股票交易量成正比,其中对数价格影响的瞬时性建模与 Obizhaeva 和 Wang(《金融马克》,16:1-32,2013 年)中的名义价格类似。一般来说,我们允许非线性价格影响和弹性函数。描述最小超级套期保值价格的粘性解受价格影响的瞬时性以及实物或现金结算规格的制约。非流动性条件下的定价方程以非旁证的方式扩展了完全市场的无套利定价(参见 Çetin 等(Finance Stoch.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Finance and Stochastics
Finance and Stochastics 管理科学-数学跨学科应用
CiteScore
2.90
自引率
5.90%
发文量
20
审稿时长
>12 weeks
期刊介绍: The purpose of Finance and Stochastics is to provide a high standard publication forum for research - in all areas of finance based on stochastic methods - on specific topics in mathematics (in particular probability theory, statistics and stochastic analysis) motivated by the analysis of problems in finance. Finance and Stochastics encompasses - but is not limited to - the following fields: - theory and analysis of financial markets - continuous time finance - derivatives research - insurance in relation to finance - portfolio selection - credit and market risks - term structure models - statistical and empirical financial studies based on advanced stochastic methods - numerical and stochastic solution techniques for problems in finance - intertemporal economics, uncertainty and information in relation to finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信