Weak Sensitive Compactness for Linear Operators

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Quanquan Yao, Peiyong Zhu
{"title":"Weak Sensitive Compactness for Linear Operators","authors":"Quanquan Yao, Peiyong Zhu","doi":"10.1142/s0218127424500160","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> be a linear dynamical system, where <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> is a separable Banach space and <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>T</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>X</mi></math></span><span></span> is a bounded linear operator. We show that if <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is invertible, then <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is weakly sensitive compact if and only if <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is thickly weakly sensitive compact; and that there exists a system <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">×</mo><mi>Y</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">×</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span> such that:</p><table border=\"0\" list-type=\"order\" width=\"95%\"><tr><td valign=\"top\">(1)</td><td colspan=\"5\" valign=\"top\"><p><span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">×</mo><mi>Y</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">×</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is cofinitely weakly sensitive compact;</p></td></tr><tr><td valign=\"top\">(2)</td><td colspan=\"5\" valign=\"top\"><p><span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>Y</mi><mo>,</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span> are weakly sensitive compact; and</p></td></tr><tr><td valign=\"top\">(3)</td><td colspan=\"5\" valign=\"top\"><p><span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>Y</mi><mo>,</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span> are not syndetically weakly sensitive compact.</p></td></tr></table><p>We also show that if <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is weakly sensitive compact, where <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> is a complex Banach space, then the spectrum of <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>T</mi></math></span><span></span> meets the unit circle.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500160","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Let (X,T) be a linear dynamical system, where X is a separable Banach space and T:XX is a bounded linear operator. We show that if (X,T) is invertible, then (X,T) is weakly sensitive compact if and only if (X,T) is thickly weakly sensitive compact; and that there exists a system (X×Y,T×S) such that:

(1)

(X×Y,T×S) is cofinitely weakly sensitive compact;

(2)

(X,T) and (Y,S) are weakly sensitive compact; and

(3)

(X,T) and (Y,S) are not syndetically weakly sensitive compact.

We also show that if (X,T) is weakly sensitive compact, where X is a complex Banach space, then the spectrum of T meets the unit circle.

线性算子的弱敏感紧凑性
设 (X,T) 是线性动力系统,其中 X 是可分离的巴拿赫空间,T:X→X 是有界线性算子。我们证明,如果(X,T)是可逆的,那么当且仅当(X,T)是厚弱敏感紧凑时,(X,T)才是弱敏感紧凑的;并且存在这样一个系统(X×Y,T×S):(1)(X×Y,T×S)是共弱敏感紧凑的;(2)(X,T)和(Y,S)是弱敏感紧凑的;(3)(X,T)和(Y,S)不是联合弱敏感紧凑的。我们还证明,如果 (X,T) 是弱敏感紧凑的,其中 X 是复巴纳赫空间,那么 T 的谱满足单位圆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信