{"title":"Long directed detours: Reduction to 2-Disjoint Paths","authors":"Ashwin Jacob, Michał Włodarczyk, Meirav Zehavi","doi":"10.1016/j.ipl.2024.106491","DOIUrl":null,"url":null,"abstract":"<div><p>In the <span>Longest</span> <span><math><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span><span>-Detour</span> problem, we look for an <span><math><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-path that is at least <em>k</em> vertices longer than a shortest one. We study the parameterized complexity of <span>Longest</span> <span><math><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span><span>-Detour</span> when parameterized by <em>k</em>: this falls into the research paradigm of ‘parameterization above guarantee’. Whereas the problem is known to be fixed-parameter tractable (FPT) on undirected graphs, the status of <span>Longest</span> <span><math><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span><span>-Detour</span> on directed graphs remains highly unclear: it is not even known to be solvable in polynomial time for <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>. Recently, Fomin et al. made progress in this direction by showing that the problem is FPT on every class of directed graphs where the <span>3-Disjoint Paths</span> problem is solvable in polynomial time. We improve upon their result by weakening this assumption: we show that only a polynomial-time algorithm for <span>2-Disjoint Paths</span> is required.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"186 ","pages":"Article 106491"},"PeriodicalIF":0.7000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019024000218","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the Longest-Detour problem, we look for an -path that is at least k vertices longer than a shortest one. We study the parameterized complexity of Longest-Detour when parameterized by k: this falls into the research paradigm of ‘parameterization above guarantee’. Whereas the problem is known to be fixed-parameter tractable (FPT) on undirected graphs, the status of Longest-Detour on directed graphs remains highly unclear: it is not even known to be solvable in polynomial time for . Recently, Fomin et al. made progress in this direction by showing that the problem is FPT on every class of directed graphs where the 3-Disjoint Paths problem is solvable in polynomial time. We improve upon their result by weakening this assumption: we show that only a polynomial-time algorithm for 2-Disjoint Paths is required.
期刊介绍:
Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered.
Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.